簡易檢索 / 詳目顯示

研究生: 古妙芳
Ivon - Kusmijo Chandra
論文名稱: 二價金屬離子與鄰氨基苯酚及3.4-二羥基苯甲酸溶液平衡之研究
Solution Equilibria Studies of Complexes between Divalent Metal Ions with ortho-Aminophenol and 3,4-Dihydroxybenzoic Acid
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: -
Wenny Irawaty
-
Aning Ayucitra
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 65
中文關鍵詞: 3.4-二羥基苯甲酸二價金屬離子ortho-氨基苯酚Hyperquad2008pH電位滴定法紫外分光光度計
外文關鍵詞: ortho-aminophenol, 3.4-dihydroxybenzoic acid, divalent metal ions, Hyperquad2008, pH-potentiometry, UV-Vis spectrophotometry
相關次數: 點閱:193下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究系統性的探討配體(ortho-氨基苯酚和3,4-二羥基苯甲酸)與各種二價金屬離子(Cu2+, Be2+, Zn2+, Ni2+, Co2+, 和Mn2+)在恆溫37℃ 和 離子強度0.15 mol.dm-3 NaCl下之螯合作用。研究利用電位滴定和分光光度法,配合Hyperquad2008和HySS軟體以探討在二元和三元系統中金屬與配體錯合物之形成及穩定性。
兩種配體皆擁有以官能團氨基(-NH2),羟基(-OH)和羧基(-COOH)形式存在的潛在接合位置。系統中若含3,4-二羥基苯甲酸(D配体)會比含ortho-氨基苯酚(A配体)形成更穩定的金属錯合物。在金屬與配體在二元和三元的系統中形成錯合物時,其穩定性按以下順序:Cu2+, Be2+, Zn2+, Ni2+, Co2+, Mn2+ 遞減。,其中有強烈到弱的協調。本研究也計算ΔlogK以研究三元錯合物相對於對應的二元錯合物之穩定性,結果發現ΔlogK 為負值,是以形成二元錯合物(MA或MD)比形成三元錯合物(MAD)更容易。另外也計算參數logX用以度量一莫耳二元錯合物MA2和一莫耳二元錯合物MD2形成兩莫耳MAD之傾向。


Chelations of ligand (ortho-aminophenol and 3,4-dihydroxybenzoic acid) with various divalent metal ions (Cu2+, Be2+, Zn2+, Ni2+, Co2+ and Mn2+) at constant temperature 37°C and ionic strength 0.15 mol.dm-3 NaCl were systematically investigated. The studies were carried out by employing potentiometric and spectrophotometry method, along with Hyperquad2008 and HySS software, to investigate the formation and stability of metal-ligand complex formed in binary and ternary system.
Both ligands possess potential coordinating sites which exist as amino (-NH2), hydroxyl (-OH) and carboxyl (-COOH) functional groups. The system that contains 3,4-dihydroxybenzoic acid (D) is more stable than that contains ortho-aminophenol (A). In the following order: Cu2+, Be2+, Zn2+, Ni2+, Co2+, Mn2+, metal ion that occupies front position will form complex in binary and ternary systems with higher stability than that of metal ion in the rear position. To investigate the stability of ternary complexes relative to their corresponding binary complexes, calculation of log K was done and negative values were obtained. Thus the formation of binary complex (MA or MD) is more favorable than ternary complex (MAD). Another parameter, log X, was also calculated to measure the tendency of one mole each of the binary complexes MA2 and MD2 to form two moles of MAD.

RECOMMENDATION LETTER ii QUALIFICATION LETTER iii 摘要 iv ABSTRACT v ACKNOWLEDGEMENT vi TABLE OF CONTENT vii LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1. INTRODUCTION 1 1.1. Research Background 1 1.2. Objectives 2 CHAPTER 2. LITERATURE REVIEW 4 2.1. Chelating Agent 4 2.1.1. ortho-Aminophenol 7 2.1.2. 3,4-Dihydroxybenzoic Acid or Protocatechuic Acid 8 2.2. Metals 9 2.2.1. Manganese 10 2.2.2. Cobalt 10 2.2.3. Nickel 11 2.2.4. Copper 11 2.2.5. Zinc 12 2.2.6. Beryllium 12 2.3. Basic Concept of Metal-Ligand Equilibria in Solution 13 2.3.1. Definition of “Stable” and Formation Constant 13 2.3.2. Physical Factors Affecting Complex Stability 15 2.3.3. Fundamental Principles of Metal-Ligand Coordination 17 CHAPTER 3. EXPERIMENTAL METHOD 20 3.1. Materials 20 3.2. Instrumentations 21 3.3. Experimental Procedure 21 3.3.1. Potentiometric Measurement 21 3.3.2. Software Analysis 23 3.3.3. UV-Visible Spectrophotometric Measurement 24 CHAPTER 4. RESULT AND DISCUSSION 26 4.1. Protonation Constants 26 4.2. Potentiometry Studies of Metal-Ligand Complexation 35 4.2.1. Binary System of Metal-Ligand Complex 35 4.2.2. Ternary System of Metal-Ligand Complex 46 CHAPTER 5. CONCLUSION 54 REFERENCES 56

[1] Flora, S. J. S., Pachauri, V. Chelation in Metal Intoxication. Int. J. Environ. Res. Public Health, 2010, 7, 2745-2788.
[2] Flora, S.J.S., Mittal, M., Mehta, A. Heavy Metal Induced Oxidative Stress and Its Possible Reversal by Chelation Therapy. Ind. J. Med. Res. 2008, 128, 501-523.
[3] Baum, C.R. Treatment of Mercury Intoxication. Curr. Opin. Pediatr., 1999, 11, 265-268.
[4] Guldager, B., Jorgensen, P.J., Grandjean, P. Metal Excretion and Magnesium Retention in Patients with Intermittent Claudication Treated with Intravenous Disodium EDTA. Clin. Chem., 1996, 42, 1938-1942.
[5] Fournier, L., Thomas, G., Garnier, R., Buisine, A., Houze, P., Pradier, F. 2,3-Dimercaptosuccinic Acid Treatment of Heavy Metal Poisoning in Humans. Med. Toxicol., 1988, 3, 499-504.
[6] Peters, R., Stocken, L., Thompson, R., British Anti-Lewisite (BAL). Nature, 1945, 156, 616-619.
[7] Janakiraman, N. Hemolysis During BAL Chelation Therapy for High Blood Lead Levels in Two G6PD Deficient Children. Clin. Pediatr. 1978, 17, 485-487.
[8] Klaassen, C. D. Heavy Metals and Heavy Metal Antagonists. In The Pharmacological Basis of Therapeutics; Goodman, L., Gilman, A., Eds.; McGraw Hill, Medical Publishing Division: New York, USA, 2006, pp. 1825-1872.
[9] Andersen, O. Principles and Recent Developments in Chelation Treatment of Metal Intoxication. Chem. Rev., 1999, 99, 2683-2710.
[10] Quan, H., Ghali, W. A., Verhoef, M. J., Norris, C. N., Galbraith, P. D., Knudtson, M. L. Use of Chelation Therapy After Coronary Angiography. Am. J. Med., 2001, 111, 686-691.
[11] Miller, K. L., Liebowitz, R. S., Newby, L. K. Complementary and Alternative Medicine in Cardiovascular Diseases: A Review of Biologically Based Approaches. Am. Heart J., 2004, 147, 401-411.
[12] Flora, S. J. S., Bhattacharya, R., Vijayaraghavan, R. Combined Therapeutic Potential of Meso-2,3-Dimercaptosuccinic Acid and Calcium Disodium Edetate in the Mobilization and Distribution of Lead in Experimental Lead Intoxication in Rats. Fund. Appl. Toxicol., 1995, 25, 233-240.
[13] Knudtson, M. L., Wyse, K. G., Galbraith, P. D. Chelation Therapy for Ischemic Heart Disease: A Randomized Controlled Trail. JAMA, 2002, 287, 481-486.
[14] Ibim, S. E., Trotman, J., Musey, P. I., Semafuko, W. E. Depletion of Essential Elements by Calcium Disodium EDTA Treatment in the Dog. Toxicology, 1992, 73, 229-237.
[15] Roussaeux, C. G., MacNabb, L. G. Oral Administration of D-Penicillamine Causes Neonatal Mortality Without Morphological Defects in CD-1 Mice. J. Appl. Toxicol., 1992, 12, 35-38.
[16] Grasedyck, K. D-Penicillamine: Side Effects, Pathogenesis and Decreasing the Risks. Z. Rheumatol., 1988, 47, 17-19.
[17] Pachauri, P., Saxena, G., Mehta, A., Mishra, D., Flora, S.J.S. Combinational Chelation Therapy Abrogates Lead Induced Neurodegeneration in Rats. Toxicol. Appl. Pharmacol. 2009, 240, 255-265.
[18] Flora, S.J.S., Pande, M., Mehta, A. Beneficial Effect of Combined Administration of Some Naturally Occurring Antioxidants (Vitamins) and Thiol Chelators in the Treatment of Chronic Lead Intoxication. Chem. Biol. Inter. 2003, 145, 267-280.
[19] Pande, M., Flora, S.J.S. Lead Induced Oxidative Damage and Its Response to Combined Administration of α-Lipoic Acid and Succimers in Rats. Toxicology 2002, 177, 187-196.
[20] Panoutsopoulos, G. I., Beedham, C. Enzymatic Oxidation of Vanillin, Isovanillin and Protocatechuic Aldehyde with Freshly Prepared Guinea Pig Liver Slices. Cell Physiol. Biochem., 2005, 15, 89-98.
[21] Schmeda-Hirschmann, G., Tapia, A., Theoduloz, C., Rodriguez, J., Lopez, S., Feresin, G. E. Free Radical Scavengers and Antioxidants from Tagetes mendocina. Z. Naturforsch C., 2004, 59, 345-353.
[22] Mary, B., Haslewood, G. A. D. Antibacterial Action of 2-Aminophenol (o-Aminophenol). Brit. Med. J., 1944, 2, 754.
[23] Mary, B., Haslewood, G. A. D. The Antibacterial Activity of Simple Derivatives of 2-Aminophenol. Biochem., 1945, 39, 285-287.
[24] Chen, Z., Ricigliano, J. W., Klessig, D. F. Purification and Characterization of a Soluble Salicylic Acid-Binding Protein from Tobacco. Proc. Natl. Acad. Sci. USA, 1993, 90, 9533-9537.
[25] Tseng, T. H., Hsu, J. D., Lo, M. H., Chu, C.Y., Chou, F. P., Huang, C. L., Wang, C. J. Inhibitory Effect of Hibiscus Protocatechuic Acid on Tumor Promotion in Mouse Skin. Cancer Lett., 1998, 126, 199-207.
[26] Tanaka, T., Kawamori, T., Ohnishi, M., Okamoto, K., Mori, H., Hara, A. Chemoprevention of 4-Nitroquinoline 1-Oxide-Induced Oral Carcinogenesis by Dietary Protocatechuic Acid During Initiation and Postinitiation Phases. Cancer Res., 1994, 54, 2359-2365.
[27] Suzuki, R., Kohno, H., Sugie, S., Tanaka, T. Dietary Protocatechuic Acid During the Progression Phase Exerts Chemopreventive Effects on Chemically Induced Rat Tongue Carcinogenesis. Asian Pac. J. Cancer Prev., 2003, 4, 319-326.
[28] House, J.E., Inorganic Chemistry. 2008, Elsevier Inc.
[29] Flora, S. J. S. Arsenic Induced Oxidative Stress and Its Reversibility Following Combined Administration of N-Acetylcysteine and Meso-2,3-Dimercaptosuccinic Acid in Rats. Clin. Exp. Pharmacol. Physiol., 1999, 26, 865-869.
[30] Kannan, G. M., Flora, S. J. S. Combined Administration of N-Acetyl Cysteine and Monoisoamyl DMSA on Tissue Oxidative Stress During Arsenic Chelation Therapy. Biol. Trace Elem. Res., 2006, 110, 43-59.
[31] Mishra, D., Flora, S. J. S. Quercetin Administration During Chelation Therapy Protects Arsenic Induced Oxidative Stress in Mouse. Biol. Trace Elem. Res., 2008, 122, 137-147.
[32] Flora, S. J. S. Nutritional Components Modify Metal Absorption, Toxic Response and Chelation Therapy. J. Nutri. Environ. Med., 2002, 12, 51-65.
[33] Flora, S. J. S., Singh, S., Tandon, S. K. Chelation in Metal Intoxication XVIII: Combined Effects of Thiamine and Calcium Disodium Versenate on Lead Toxicity. Life Sci., 1986, 38, 67-71.
[34] Mishra, D., Mehta, A., Flora, S. J. S. Reversal of Hepatic Apoptosis with Combined Administration of DMSA and Its Analogues in Guinea Pigs: Role of Glutathione and Linked Enzymes. Chem. Res. Toxicol., 2008, 21, 400-407.
[35] Flora, S. J. S., Dubey, R., Kannan, G. M., Chauhan, R. S., Pant, B. P., Jaiswal, D. K. Meso-2,3-Dimercaptosuccinic Acid (DMSA) and Monoisoamyl DMSA Effect on Gallium Arsenide Induced Pathological Liver Injury in Rats. Toxicol. Lett., 2002, 132, 9-17.
[36] Flora, S. J. S., Saxena, G. Lead Induced Oxidative Stress and Hematological Alterations and Their Response to Combined Administration of Calcium Disodium EDTA with a Thiol Chelator in Rats. J. Biochem. Mol. Toxicol., 2004, 18, 221-233.
[37] Bhadauria, S., Flora, S. J. S. Response of Arsenic Induced Oxidative Stress, DNA Damage and Metal Imbalance to Combined Administration of DMSA and Monoisoamyl DMSA During Chronic Arsenic Poisoning in Rats. Cell. Biol. Toxicol., 2007, 23, 91-104.
[38] Flora, S. J. S., Saxena, G., Gautam, P., Kaur, P., Gill, K. D. Lead Induced Oxidative Stress and Alterations in Biogenic Amines in Different Rat Brain Regions and Their Response to Combined Administration of DMSA and MiADMSA. Chem. Biol. Interac., 2007, 170, 209-220.
[39] Flora, S. J. S. Influence of Simultaneous Supplementation of Zinc and Copper During Chelation of Lead in Rats. Hum. Exp. Toxicol., 1991, 10, 331-336.
[40] Saxena, G., Flora, S. J. S. Changes in Brain Biogenic Amines and Heme-Biosynthesis and Their Response to Combined Administration of Succimer and Centella asiatica in Lead Poisoned Rats. J. Pharm. Pharmacol., 2006, 58, 547-559.
[41] Mishra, D., Gupta, R., Pant, S. C., Kushwah, P., Satish, H. T., Flora, S. J. S. Therapeutic Potential of Combined Administration of MiADMSA and Moringa oleifera Seed Powder on Arsenic Induced Oxidative Stress and Metal Distribution in Mouse. Toxicol. Mechanism Meth., 2008, 19, 169-182.
[42] Flora, S. J. S., Mehta, A., Gupta, R. Prevention of Arsenic-Induced Hepatic Apoptosis by Concomitant Administration of Garlic Extracts in Mice. Chem. Biol. Inter., 2009, 177, 227-233.
[43] Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., Bakogeorgou, E., Kouimtzoglou, E., Blekas, G., Boskou, D., Gravanis, A., Castanas, E. Antiproliferative and Apoptotic Effects of Selective Phenolic Acids on T47D Human Breast Cancer Cells: Potential Mechanisms of Action. Breast Cancer Res., 2004, 6, R63–R74.
[44] Friedman, M., Jurgens, H. S. Effect of pH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem., 2000, 48, 2101–2110.
[45] Wen, A. M., Delaquis, P., Stanich, K., Toivonen, P. Antilisterial Activity of Selected Phenolic Acids. Food Microbiol., 2003, 20, 305–311.
[46] Sugiyama, N., Akahoshi, F., Kuwahara, S., Kajii, M., Sakaue, Y., Yakumaru, H., Sugiura, M., Fukaya, C. Synthesis and Topical Antiinflammatory and Antiallergic Activities of Antioxidant o-Aminophenol Derivatives. J. Med. Chem., 1994, 37, 1977-1982.
[47] Shadyro, O., Ksendzova, G., Polozov, G., Sorokin, V., Boreko, E., Savinova, O., Dubovik, B., Bizunok, N. Synthesis and Study of Antiviral and Anti-radical Properties of Aminophenol Derivatives. Bioorg. Med. Chem. Lett., 2008, 18, 2420-2423.
[48] Ohba, T., Yamauch, T., Higashiyama, K., Takahashi, N. Potent Anticancer Activities of Novel Aminophenol Analogues Against Various Cancer Cell Lines. Bioorg. Med. Chem., 2007, 15, 847-853.
[49] Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., Coni, E. Antioxidant Activity of 3,4-DHPEA-EA and Protocatechuic Acid: A Comparative Assessment with Other Olive Oil Biophenols. Redox Rep., 1999, 4, 113-121.
[50] Rice-Evans, C. A., Miller, N. J., Paganga, G. Structure Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radical Biol. Med., 1996, 20, 933–956.
[51] Sanchez-Moreno, C., Larrauri, J. A., Saura-Calixto, F. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric., 1998, 76, 270–276.
[52] Sroka, Z., Cisowski, W. Hydrogen Peroxide Scavenging, Antioxidant and Anti-Radical Activity of Some Phenolic Acids. Food Chem. Toxicol., 2003, 41, 753–758.
[53] Mitchell, S. C., Waring, R. H. Aminophenols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: New Jersey, USA, 2000.
[54] Falcone, G., Giuffre, O., Sammartano, S. Acid-base and UV Properties of Some Aminophenol Ligands and Their Complexing Ability towards Zn2+ in Aqueous Solution. J. Mol. Liq., 2011, 159, 146-151.
[55] Škriba, A., Jankova, S., Vaňa, J., Bartak, P., Bednař, P., Fryčak, P., Kučera, L., Kurka, O., Lemr, K., Macikova, P., Markova, E., Novakova, P., Papouškova, B., Skopalova, J., Švecova, H., Roithova, J. Protonation Sites and Fragmentations of para-Aminophenol. Int. J. Mass Spectro., 2013, 337, 18-23.
[56] Williams, R. T. Studies in Detoxication: I. The Influence of (a) Dose and (b) o-, m-, and p-Substitution on the Sulphate Detoxication of Phenol in the Rabbit. Biochem. J., 1938, 32, 878-887.
[57] Liu, R. H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr., 2004, 134, 3479S-3485S.
[58] Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S., Gescher, A. Characterization of Potentially Chemopreventive Phenols in Extracts of Brown Rice That Inhibit the Growth of Human Breast and Colon Cancer Cells. Cancer Epidemiol Biomarkers Prev., 2000, 9, 1163-1170.
[59] Herrmann, K. Occurrence and Content of Hydroxycinnamic and Hydroxybenzoic Acid Compounds in Foods. Crit. Rev. Food Sci. Nutr., 1989, 28, 315-347.
[60] Kayano, S., Kikuzaki, H., Fukutsuka, N., Mitani, T., Nakatani, N. Antioxidant Activity of Prune (Prunus domestica L.) Constituents and a New Synergist. J. Agric. Food Chem., 2002, 50, 3708-3712.
[61] Li, P., Wang, X. Q., Wang, H. Z., Wu, Y. N. High Performance Liquid Chromatographic Determination of Phenolic Acids in Fruits and Vegetables. Biomed. Environ. Sci., 1993, 6, 389-398.
[62] Sang, S., Lapsley, K., Jeong, W. S., Lachance, P. A., Ho, C. T., Rosen, R. T. Antioxidative Phenolic Compounds Isolated from Almond Skins (Prunus amygdalus Batsch). J. Agric. Food Chem., 2002, 50, 2459-2463.
[63] Masella, R., Vari, R., D’Archivio, M., Di-Benedetto, R., Matarrese, P., Malorni, W., Scazzocchio, B., Giovannini, C. Extra Virgin Olive Oil Biophenols Inhibit Cell-Mediated Oxidation of LDL by Increasing the mRNA Transcription of Glutathione-Related Enzymes. J. Nutr., 2004, 134, 785-791.
[64] Stagos, D., Kazantzoglou, G., Magiatis, P., Mitaku, S., Anagnostopoulos, K., Kouretas, D. Effects of Plant Phenolics and Grape Extracts from Greek Varieties of Vitis vinifera on Mitomycin C and Topoisomerase I-Induced Nicking of DNA. Int. J. Mol. Med., 2005, 15, 1013-1022.
[65] Ali, B. H., Al-Wabel, N., Blunden, G. Phytochemical, Pharmacological, and Toxicological Aspects of Hibiscus sabdariffa L.: A Review. Phytother. Res., 2005, 19, 369-375.
[66] Ellnain-Wojtaszek, M. Phenolic Acids from Ginkgo biloba L. Part II. Quantitative Analysis of Free and Liberated by Hydrolysis Phenolic Acids. Acta Pol. Pharm., 1997, 54, 229-232.
[67] Jurgenliemk, G., Nahrstedt, A. Phenolic Compounds from Hypericum perforatum. Planta Med., 2002, 68, 88-91.
[68] Ohnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Miyata, H., Mori, H. Inhibitory Effects of Dietary Protocatechuic Acid and Costunolide on 7,12-Dimethylbenz[a]anthracene-Induced Hamster Cheek Pouch Carcinogenesis. Jpn. J. Cancer Res., 1997, 88, 111-119.
[69] Tanaka, T., Kojima, T., Suzui, M., Mori H. Chemoprevention of Colon Carcinogenesis by the Natural Product of a Simple Phenolic Compound Protocatechuic Acid: Suppressing Effects on Tumor Development and Biomarkers Expression of Colon Tumorigenesis. Cancer Res., 1993, 53, 3908-3913.
[70] Nakamura, H., Nishikawa, A., Furukawa, F., Kasahara, K., Miyauchi, M., Son, H. Y., Hirose, M. Inhibitory Effects of Protocatechuic Acid on the Post-Initiation Phase of Hamster Pancreatic Carcinogenesis Induced by N-Nitrosobis(2-Oxopropyl)Amine. Anticancer Res., 2000, 20, 3423-3427.
[71] Tanaka, T., Kojima, T., Kawamori, T., Yoshimi, N., Mori, H. Chemoprevention of Diethylnitrosamine-Induced Hepatocarcinogenesis by a Simple Phenolic Acid Protocatechuic Acid in Rats. Cancer Res., 1993, 53, 2775-2779.
[72] Hirose, Y., Tanaka, T., Kawamori, T., Ohnishi, M., Makita, H., Mori, H., Satoh, K., Hara, A. Chemoprevention of Urinary Bladder Carcinogenesis by the Natural Phenolic Compound Protocatechuic Acid in Rats. Carcinogenesis, 1995, 16, 2337-2342.
[73] Mori, H., Matsunaga, K., Tanakamaru, Y., Kawabata, K., Yamada, Y., Sugie, S., Nishikawa, A. Effects of Protocatechuic Acid, S-Methylmethanethiosulfonate or 5-Hydroxy-4-(2-Phenyl-(E)Ethenyl)-2(5H)-Furanone(KYN-54) on 4-(Methylnitrosamino)-1- (3-pyridyl)-1-Butanone-Induced Pulmonary Carcinogenesis in Mice. Cancer Lett., 1999, 135, 123-127.
[74] Hirose, M., Kawabe, M., Shibata, M., Takahashi, S., Okazaki, S., Ito, N. Influence of Caffeic Acid and Other o-Dihydroxybenzene Derivatives on N-Methyl-N’-Nitro-N-Nitrosoguanidine-Initiated Rat Forestomach Carcino-genesis. Carcinogenesis., 1992, 13, 1825-1828.
[75] Mori, H., Sugie, S., Rahman, W., Suzui, N. Chemoprevention of 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine-Induced Mammary Carcinogenesis in Rats. Cancer Lett., 1999, 143, 195-198.
[76] Nakamura, Y., Torikai, K., Ohto, Y., Murakami, A., Tanaka, T., Ohigashi, H. A Simple Phenolic Antioxidant Protocatechuic Acid Enhances Tumor Promotion and Oxidative Stress in Female ICR Mouse Skin: Dose-and Timing-Dependent Enhancement and Involvement of Bioactivation by Tyrosinase. Carcinogenesis., 2000, 21, 1899-1907.
[77] Kawamori, T., Tanaka, T., Kojima, T., Suzui, M., Ohnishi, M., Mori, H. Suppression of Azoxymethane-Induced Rat Colon Aberrant Crypt Foci by Dietary Protocatechuic Acid. Jpn. J. Cancer Res., 1994, 85, 686-691.
[78] Welder, F. C. Manganese in Health and Disease. CRC Press, Boca Raton, FL., 1999.
[79] Sărić, M., Lucchini, R. Manganese. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 645-674.
[80] Dominique, L. Cobalt. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 511-528.
[81] Klein, C., Costa, M. Nickel. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 743-758.
[82] Smith, C. J., Livingston, S. D., Doolittle, D. J. An International Literature Survey of "IARC Group I Carcinogens" Reported in Mainstream Cigarette Smoke. Food Chem. Toxicol., 1997, 35, 1107–1130.
[83] Ellingsen, D. G., Horn, N., Aaseth, J. Copper. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 529-546.
[84] Simon-Hettich, B., Wibbertmann, A., Wagner, D., Tomaska, L., Malcolm, H. Zinc (Environmental Health Criteria; 221). Review, 2001. Report No. 221.World Health Organization, Geneva.
[85] Alloway, B. Zinc in Soils and Crop Nutrition, http:// www.zinc-crops.org. International Zinc Association, Brussels, 2003. [Accessed Date: June 26th, 2013].
[86] Sandstead, H. H., Au, W. Zinc. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 925-947.
[87] Jakubowski, M., Palczynski, C. Beryllium. In Handbook on the Toxicology of Metals; 3rd Ed.; Nordberg, G. F., Fowler, B. A., Nordberg, M., Friberg, L. T., Eds.; Elsevier Inc., Academic Press: Massachusetts, USA, 2007, pp. 415-431.
[88] Schwarzenbach, G. Relationships between Metal Complex Stability and the Structure of the Complexing Agents. Anal. Chem., 1960, 32, 6-9.
[89] Mellor, D. P. In Chelating Agents and Metal Chelates; Dwyer, F., Ed.; Elsevier Inc., Academic Press: New York, USA, 1964, pp.1-50.
[90] Bjerrum, J. Metal Ammine Formation in Aqueous Solution: Theory of the Reversible Step Reactions. 1941, P. Haase and Son, Denmark, Copenhagen.
[91] Calvin, M., Wilson, K. W. Stability of Chelate Compounds. J. Am. Chem. Soc., 1945, 67, 2003-2007.
[92] Johnston, W. D., Freiser, H. Structure and Behavior of Organic Analytical Reagents: Stability of Chelates of 2-(o-Hydroxyphenyl)-Benzimidazole and Analogous Reagents. Anal. Chim. Acta., 1954, 11, 301-308.
[93] Lewis, G. N. Valence and the Structure of Atoms and Molecules. 1923, Chemical Catalog Co., USA, New York, pp. 29.
[94] Sidgwick, N. V. The Electronic Theory of Valency. 1927, Oxford At The Clarendon Press, England, London.
[95] Pearson, R. G. Hard and Soft Acids and Bases, HSAB, Part 1: Fundamental Principles. J. Chem. Educ., 1968, 45, 581-587.
[96] Irving, H., Williams, R. J. P. The Stability of Transition-Metal Complexes. J. Chem. Soc., 1953, 3192-3210.
[97] Orgel, L. E. An Introduction to Transition-Chemistry: Ligand-Field Theory. 1960, Methuen, University of California.
[98] Martell, A. E., Motekaitis, R. J. Determination and Use of Stability Constants. 1992, Wiley-VCH, Inc., Canada.
[99] Gans, P., Sabatini, A., Vacca, A. Investigation of Equilibria in Solution. Determination of Equilibrium Constants with the HYPERQUAD Suite of Programs. Talanta, 1996, 43, 1739-1753.
[100] Braibanti, A. Ostacoli, G., Paoletti, P., Pettit, L. D., Sammartano, S. Recommended Procedure for Testing the Potentiometric Apparatus and Technique for the pH-metric Measurement of Metal-Complex Equilibrium Constants. Pure Appl. Chem., 1987, 59, 1721-1728.
[101] Kumar, S., Chau, C., Chau, G., McCurdy, A. Synthesis and Metal Complexation Properties of Bisbenzospiropyran Chelators in Water. Tetrahedron, 2008, 64, 7097-7105.
[102] Meloun, M., Ferenčikova, Z., Vrana, A. Determination of the Thermodynamic Dissociation Constant of Capecitabine using Spectrophotometric and Potentiometric Titration Data. J. Chem. Thermodynamics, 2011, 43, 930-937.
[103] Urbaniak, B., Kokot, Z. J. Analysis of the Factors that Significantly Influence the Stability of Fluoroquinolone-Metal Complexes. Anal. Chim. Acta, 2009, 647, 54-59.
[104] Arezzini, B., Ferrali, M., Ferrari, E., Grandi, R., Monti, S., Saladini, M. Glycosyl-Curcuminoids as Potential New Chelating Agents in Iron Overload Chelation Theraphy. Eur. J. Inorg. Chem., 2004, 646-652.
[105] Miranda, J. L., Felcman, J. Study on Guanidino-Carboxylate Interactions in Copper(II) Ternary Complexes of Guanidinoacetic Acid with Glutamic and Aspartic Acids. Polyhedron, 2003, 22, 225-233.
[106] Torres, J., Kremer, C., Kremer, E., Dominguez, S., Mederos, A., Arrieta, J. M. The Thermodynamics of the Formation of Sm(III) Mixed Ligand Complexes Carrying Alpha-Amino Acids. Inorg. Chim. Acta, 2003, 355, 175-182.
[107] Alderighi, L., Gans, P., Lenco, A., Peters, D., Sabatini, A., Vacca, A. Hyperquad Simulation and Speciation (HySS): A Utility Program for the Investigation of Equilibria Involving Soluble and Partially Soluble Species. Coord. Chem. Rev., 1999, 184, 311-318.
[108] Pavia, D. L., Lampman, G. M., Kriz, G. S. Introduction to Spectroscopy. 3rd Ed. 2001, Thomson Learning, Inc., USA.
[109] Craig, C. R., Stitzel, R. E. Modern Pharmacology. 3rd Ed. 1990, Little Brown Co., London, pp. 21–29.
[110] Andrasi, M., Buglyo, P., Zekany, L., Gaspar, A. A Comparative Study of Capillary Zone Electrophoresis and pH-Potentiometry for Determination of Dissociation Constants. J. Pharm. Biomed. Anal., 2007, 447, 1040–1047.
[111] Dasgupta, P., Jordan, R. B. Kinetic Study of the Complexing of 2-Aminophenol Derivatives by Nickel(II). Inorg. Chem., 1985, 24, 2717-2720.
[112] Galano, A., Gonzalez, A. P. On The Free Radical Scavenging Mechanism of Protocatechuic Acid, Regeneration of the Catechol Group in Aqueous Solution. Theor. Chem. Acc., 2012, 131: 1265-1279.
[113] Abichandani, C. T., Jatkar, S. K. K. Dissociation Constants of Ortho-, Meta-, and Para- Hydroxy Benzoic Acids, Gallic Acid, Catechol, Resorcinol, Hydroquinone, Pyrogallol, and Phloroglucinol. J. Indian Inst. Sci., 1938, 21A, 417-441.
[114] Hatzipanayioti, D., Karaliota, A., Kamariotaki, M., Aletras, V., Petropouleas, P. Theoretical and Spectroscopic Investigation of The Oxidation and Degradation of Protocatechuic Acid. Chem. Phys., 2006, 325, 341–350.
[115] Zavitsanos, K., Tampouris, K., Petrou, A. L. Reaction of Chromium(III) with 3,4-Dihydroxybenzoic Acid: Kinetics and Mechanism in Weak Acidic Aqueous Solutions. Bioionorg. Chem. Appl., 2008, 2008, 1–8.
[116] Martell, A. E., Smith, R. M. Critical Stability Constants. Second Supplement. Volume 6. 1989, Plenum Press, New York.
[117] Schwarzenbach, G. Der Chelateffekt. Helv. Chim. Acta, 1952, 35, 2344–2359.
[118] Adamson, A. W. A Proposed Approach to The Chelate Effect. J. Am. Chem. Soc., 1954, 76, 1578–1579.
[119] Walsh, K. A., Dalder, E., Goldberg, A. Olson, D. L., Vidal, E. E. Beryllium Chemistry and Processing. 2009, ASM International, USA, Ohio, pp 93-106.
[120] Raith, W., Mulvey, T. Constituents of Matter: Atoms, Molecules, Nuclei, and Particles. 2001, CRC Press., United Kingdom, London, pp. 360.
[121] Ahrland, S. Chatt, J. Davies, N. R. The relative Affinities of Co-ordinating Atoms for Silver Ion; Part I. Oxygen, Sulphur, and Selenium. J. Chem. Soc., 1958, 264-276.
[122] Khalil, M. M., Radalla, A. E., Qasem, F., Khaled, R. Equilibrium Studies of Ternary Systems Containing Some Selected Transition Metal Ions, Triazoles and Aromatic Carboxylic Acids. Korean J. Chem. Eng., 2014, 31, 109-119.
[123] Sigel, H. Coordination Chemistry. Volume 20. 1980, Pergamon Press, Oxford.
[124] Martin, R. B., Prados, P. Some Factors Influencing Mixed Complex Formations. J. Inorg. Nucl. Chem., 1974, 36, 1665.
[125] Martin, R. B. Metal Ions in Biological Systems. 1979, Marcel Dekker, USA, New York.

QR CODE