簡易檢索 / 詳目顯示

研究生: 龔暄芳
ERZALINA - HERNOWO
論文名稱: 第一過渡金屬離子與棓酸、L-己氨酸和菸鹼酸配位體穩定常數之探討
STABILITY CONSTANT STUDY OF FIRST ROW TRANSITION METAL IONS WITH BIOLOGICAL IMPORTANT LIGANDS; GALLIC ACID, L-NORLEUCINE AND NICOTINIC ACID
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: None
Suryadi Ismadji
李明哲
Ming-Jer Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 119
中文關鍵詞: 配位體金屬離子非蛋白質氨基酸pH電位滴定法紫外分光光度計
外文關鍵詞: Ligand, metal ion, non-protein amino acid, pH-potentiometry, UV spectrophotometry
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討三價金屬離子(Fe3+和Cr3+)和二價金屬離子(Cu2+、Ni2+和Co2+)與配位體棓酸、L-己氨酸和菸鹼酸之平衡常數。利用pH電位滴定法在25℃水溶液(I=0.15之硝酸鈉)下,探討金屬離子和配位體之二元和混合錯合物。為了探討穩定常數,本研究也一併探討自由配位體之質子化常數。利用電位滴定所測得之數據代入“HYPERQUAD2008“之軟體以建立各系統中錯化作用之模式,並且以紫外分光光度計進行定性確認各溶液中形成之錯和物。
    本研究也討論各系統中所發現之現象。在金屬離子之性質方面,穩定常數的趨勢是 Cu2+> Ni2+> Co2+,此與歐文-威廉之二價金屬離子順序吻合。至於三價金屬離子,Fe3+之穩定常數永遠高於Cr3+。在配位體方面,當系統含有棓酸作為配位體時,比其他不含棓酸之系統穩定。本研究並利用∆log K進行混合配位體與二元錯合物穩定性之定量比較。


    The equilibrium constants for trivalent metal ions (Fe3+ and Cr3+) and divalent metal ions (Cu2+, Ni2+ and Co2+) with ligands gallic acid, L-norleucine and nicotinic acid were reported in this work. The binary and mixed ligand complexes between those metal ions and ligands were studied by using pH-potentiometric titration in aqueous solution at 25oC (I = 0.15M NaNO3). In order to determine the stability constant values, the protonation constants of free ligands were also determined. The complexation model for each system was established by the software program “HYPERQUAD 2008” from potentiometric titration data. UV spectrophotometric measurement was carried out to confirm the complex that formed in each solution qualitatively.
    The phenomenon that occurred in each system was discussed. In terms of the nature of metal ion, the trend of stability constant is Cu2+ > Ni2+ > Co2+, which is in agreement with the Irving-William order of divalent metal ions. For trivalent metal ions, stability constant of Fe3+ is always higher than that of Cr3+. In terms of the ligand, the system that contains gallic acid as a ligand is more stable than the other systems that do not contain gallic acid. The stability of mixed ligand complexes was quantitatively compared with corresponding binary complexes in term of ∆log K.

    COVER i 摘要 ii ABSTRACT iii ACKNOWLEDGMENTS iv CONTENT v LIST OF TABLE viii LIST OF FIGURE x CHAPTER 1 1 INTRODUCTION 1 1.1. Aim of Work 1 1.2. Metal 3 1.2-1. Iron 5 1.2-2. Chromium 6 1.2-3. Copper 8 1.2-4. Nickel 9 1.2-5. Cobalt 11 CHAPTER 2 13 LITERATURE SURVEY 13 2.1. Ligand 13 2.1-1. Amino Acid 14 2.1-1-1. L-Norleucine 16 2.1-2. Phenolic Acid 17 2.1-2-1. Gallic Acid 19 2.1-3. Nicotininc Acid 20 2.2. Binary and Mixed Ligand Complexes 22 2.3. Norleucine Complexes 25 2.4. Gallic Acid Complexes 31 2.5. Nicotinic Acid Complexes 34 CHAPTER 3 38 EXPERIMENTAL 38 3.1. Materials 38 3.2. Apparatus 39 3.3. Experimental Procedure 39 3.3-1. pH-potentiometric Titration 40 3.3-2. UV-Visible Spectrophotometric Measurement 41 3.4. Computer Program 41 CHAPTER 4 44 RESULTS AND DISCUSSION 44 4.1. Protonation Constants of Ligands 45 4.2. Binary Complexes 47 4.3. Mixed Ligand Complex 56 4.4. Speciation Diagram 66 4.5. UV-Visible Spectroscopy 80 CHAPTER 5 88 CONCLUSION 88 REFERENCES 90

    1. Muzzarelli, R.A.A., Chitin and Its Derivatives: New Trends of Applied Research Carbohydrate Polymers, 1983. 3: p. 53-75.
    2. Call., H.P. and I. Mucke., History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym R -process). Journal of Biotechnology, 1997. 53: p. 163-202.
    3. Gupte, A. and R.J. Mumper, Copper Chelation by D-penicillamine Generates Reactive Oxygen Species That are Cytotoxic to Human Leukemia and Breast Cancer Cells. Free Radical Biology & Medicine, 2007. 43: p. 1271– 1278.
    4. Domingoa, J.L., A.d.l. TorTea, M. Belks, E. Mayayo, J.M. Llobet, and J. Corbellab, Developmental Toxicity of Metal Chelating Agents. Reproductive Toxicology, 1998. 12(5): p. 499 - 510.
    5. Nogueira, C.W., F.W. Santos, F.A. Soares, and J.B.T. Rocha, 2,3-Dimercaptopropanol, 2,3-dimercaptopropane-1-sulfonic acid, and meso-2,3-dimercaptosuccinic acid inhibit d-aminolevulinate dehydratase from human erythrocytes in vitro. Environmental Research, 2004. 94: p. 254–261.
    6. Stewart, P.W., R.G. Burright, and P.J. Donovick, DMSA Chelation During Co-Exposure to Lead: Increased Locomotor Activity In Lead-Exposed Mice But Not Controls Physiology & Behavior, 1995. 57(5): p. 863-867.
    7. Aposhian, H.V., R.M. Maiorinoa, D. Gonzalez-Ramirez, M. Zuniga-Charles, Z. Xua, K.M. Hurlbutd, P. Junco-Munoze, R.C. Dartd, and M.M. Aposhiana, Mobilization of Heavy Metals by Newer, Therapeutically Useful Chelating Agents Toxicology, 1995. 97: p. 23-38.
    8. Domingoa, J.L., A.d.l. Tortea, M. Belks, E. Mayayo, J.M. Llobet, and J. Corbellab, Comparative Effects of The Chelators Sodium 4,5 dihydroxybenzene - 1,3-disulfonate (Tiron) and Diethylenetriaminepentaacetic Acid (DTPA) on Acute Uranium Nephrotoxicity in Rats Toxicology, 1997. 118: p. 49-59.
    9. Beltran, J.L., N. Sanli, G. Fonrodona, D. Barron, G. Ozkan, and J. Barbosa, Spectrophotometric, Potentiometric and Chromatographic pKa Values of Polyphenolic Acids in Water and Acetonitrile–Water Media. Analytica Chimica Acta, 2003. 484: p. 253-264.
    10. Lu, L.L., Y.H. Li, and X.Y. Lu, Kinetic Study of The Complexation of Gallic Acid with Fe(II). Spectrochimica Acta Part A, 2009. 74: p. 829-834.
    11. Yu, S.H., F.L. Mi, J.C. Pang, S.C. Jiang, T.H. Kuo, S.J. Wu, and S.S. Shyu, Preparation and Characterization of Radical and pH-Responsive Chitosan–Gallic Acid Conjugate Drug Carriers. Carbohydrate Polymers, 2010. 84: p. 794-802.
    12. Dascenzo, G. and W.W. Wendlandt, The Thermal Properties of some Metal Pyridinecarboxylates. Analytica Chimica Acta, 1970. 50: p. 79-91.
    13. Vargova, Z., J. Kotek, J. Rudovsky, J. Plutnar, R. Gyepes, P. Hermann, K. Gyoryova, and I. Lukes, Ternary Complexes of Zinc(II), Cyclen and Pyridinecarboxylic Acids. European Journal of Inorganic Chemistry, 2007. 2007(25): p. 3974-3987.
    14. Urbanska, J. and H. Podsiadly, Interaction of Niacin with Nickel (II) Ions. Journal of Electroanalytical Chemistry, 2009. 637: p. 55-62.
    15. Jellinek, H.H.G. and J.R. Urwin, Ultraviolet Absorption Spectra and Dissociation Constants of Picolinic, Isonicotinic Acids and their Amides. The Journal of Physical Chemistry, 1954. 58(7): p. 548-550.
    16. Peng, H., D. Revell, C.S. McSweeney, and J.D. Brooker, Effects of Different Non-Protein Amino Acids on in Vitro Dry Matter Digestibility of Lucerne Chaff. Journal Animal Feed Science and Technology, 2005. 121: p. 134-146.
    17. McSweeney, C.S., L.L. Blackall, E. Collins, L.L. Conlan, R.I. Webb, S.E. Denman, and D.O. Krause, Enrichment, Isolation and Characterisation of Ruminal Bacteria That Degrade Non-Protein Amino Acids from The Tropical Legume Acacia Angustissima. Journal of Animal Feed Science and Technology, 2005. 121: p. 191-204.
    18. Itamar, B., J.L. Warren, F.R. William, and H.R. David, Environmental Inorganic Chemistry. 1988, New York: Pergamon Press.
    19. Institute, M.I., Iron, in The Encyclopedia of Earth, C.J. Cleveland, Editor. 2007, Environmental Information Coalition, National Council for Science and the Environment: Washington, D.C.
    20. Bruening, G.E. E.Conn, R.H. Doi, and P.K. Stumpf, Outlines of Biochemistry. 1978, New York: John Wiley and Sons, Inc.
    21. Zhang, W.X., Nanoscale Iron Particles for Environmental Remediation: An overview. Journal of Nanoparticle Research, 2003. 5: p. 323-332.
    22. Cotton, F. and G. Wilkinson, Advanced Organic Chemistry. 4 ed. 1980, New York: John Willey and Sons, Inc.
    23. Rong, M., R.J. Motekaitis, and A.E. Martell, Synthesis of N-hydroxybenzylethylenediamine-ZV,N’,N’-triacetic acid and the stabilities of its complexes with divalent and trivalent metal ions Inorganic Chimica Acta, 1995. 233: p. 137-143.
    24. Irwin, R.J., Environmental Contaminants Encyclopedia Chromium III (Trivalent Chromium) Entry. 1997, Colorado.
    25. Khade, B.C., P.N. Deore, and B.R. Arbad, Composition and Stability of Chromium Metal Complexes with Drug Salbutamol and Amino Acid. An International Journal of Pharmaceutical Sciences, 2011. 2(1): p. 73-86.
    26. Toxological Review of Trivalent Chromium, U.S.E.P. Agency, Editor. 1998: Washington, DC.
    27. Reeves, P.G. and L.C.S. DeMars, Copper Deficiency Reduces Iron Absorption and Biological Half-Life in Male Rats The Journal of Nutrition, 2004. 134(8): p. 1953-1957.
    28. Bremmer, I., Manifestation of Copper Excess. The American Journal of Clinical Nutrition, 1998. 67: p. 1069S-1073S.
    29. Appleby, C.A., B.A. Wittenberg, and J.B. Wiitenberg, Nicotinic Acid as a Ligand Affecting Leghrmoglobin Structure and Oxygen Reactivity. Proceeding of the National Academy of Science, USA, 1973. 70(2): p. 564-568.
    30. Zhicheng, S., Nickel Carbonyl: Toxicity and Human Health. Sci Total Environ, 1994. 148: p. 292-298.
    31. Duda-Chodak, A. and U. Baszczyk, The Impact of Nickel on Human Health. J. Elementol, 2008. 13(4): p. 685-696.
    32. Irwin, R.J., Environmental Contaminants Encyclopedia Nickel Entry, W.O.B. National Park Service Water Resources Divisions, Editor. 1997: Colorado.
    33. Cobalt in The Environment, in Cobalt Exposure and Heart Disease. 2006.
    34. Gerberding, J.L., Toxicological Profile for Cobalt, D.o.H.a.H. Services, Editor. 2004: Atlanta.
    35. Cobalt in Cemented Carbides. 2006.
    36. Gispert, J.R., Coordination Chemistry. 2008, Weinheim.
    37. Orgel, L.E., An Introduction to Transition-Metal Chemistry Ligand-Field Theory. 1972, Cambridge.
    38. Yamauchi, O. and A. Odani, Stability Constant of Metal Complexes of Amino Acids with Charged Side Chains - Part I: Positively Charged Side Chains. Pure & Appl. Chem., 1996. 68(2): p. 469-496.
    39. Swain, T., Secondary compounds as Protective Agents. Plant Physiol, 1977. 28: p. 479-501.
    40. Crider, S.E., R.J. Holbrook, and K.J. Franz, Coordination of Platinum Therapeutic Agents to Met-Rich Motif of Human Copper Transport Protein1. Metallomics, 2009. 2: p. 74-83.
    41. Tews, J.K. and A.E. Harper, Tissue Amino Acids In Rats Fed Norleucine, Norvaline, Homoarginine or Other Amino Acid Analogues. J. Nutr, 1986. 116: p. 1464-1472.
    42. Okada, H., K. Yamamoto, S. Tsutano, and S. Nakamura, A New Group of Antibiotics, Hydroxamic Acid Antimicotic Antibiotics. Journal of antibiotics, 1988. 7: p. 869-874.
    43. Sarpotdar, P.P., J.L. Gaskill, R.P. Giannini, and C.R. Daniels, L-Amino Acids as Transdermal Penetratin Enhancers, in United States Patent. 1988: United States.
    44. V.P.Skulachev, New Data on Biochemical Mechanism of Programmed Senescence of Organisms and antioxidant Defense of Mitochondria. Biochemistry (moscow) Journal, 2009. 74: p. 1715-1722.
    45. Bennet, R.C. and Wallsgrove, Secondary Metabolites in Plant Defence Mechanisms, Tansley Review. New Phytol, 1994. 127: p. 617-633.
    46. Silva, F.A.M., F. Borges, C. GuimaraAes, J.L.F.C. Lima, C. Matos, and S. Reis, Phenolic Acids and Derivatives: Studies on the Relationship among Structure, Radical Scavenging Activity, and Physicochemical Parameters. J. Agric. Food Chem, 2000 48: p. 2122−2126.
    47. Bengoechea, L., T. Hernandez, C. Quesada, B. Bartolome, I. Estrella, and C. Gomez-Cordoves, Structure of Hydroxycinnamic Acid Derivatives Established by High-Performance Liquid Chromatography with Photodiode-Array Detection. Chromatographia Journal, 1995. 41: p. 94-98.
    48. Cheng, J.C., F. Dai, B. Zhou, L. Yang, and Z.L. Liu, Antioxidant Activity of Hydroxycinnamic Acid Derivatives in Human Low Density Lipoprotein: Mechanism and Structure-Activity Relatinship. Food Chemistry, 2007. 104: p. 132-139.
    49. Fazary, A.E., M. Taha, and Y.H. Ju, Iron Complexation Studies of Gallic Acid. Journal of Chemical and Engineering Data, 2009. 54: p. 35-42.
    50. Liu, N., G.Z. Fang, and S. Su, Synthesis and the Characterizations of Structure and Function of Gallic Acid Microcrystalline Cellulose Ester. Advanced Materials Research 2009. 79: p. 2059-2062.
    51. Ow, Y.Y. and I. Stupans, Gallic Acid and Gallic Acid Derivatives: Effects on Drug Metabolizing Enzymes. 2003. 4(3): p. 241-248.
    52. Harvey Wickes Felter, M.D. and P.M. John Uri Lloyd, Ph. D., Acidum Gallicum (U. S. P.)—Gallic Acid. 1898.
    53. Kim, S.H., C.D. Jun, K. Suk, B.J. Choi, H. Lim, S. Park, S.H. Lee, H.Y. Shin, D.K. Kim, and T.Y. Shin, Gallic Acid Inhibits Histamine Release and Pro-Inflammatory Cytokine Production in Mast Cells. Oxford Journals Toxicological Sciences, 2006. 91(1): p. 123–131.
    54. Chuck, R., Technology Development in Nicotinate Production. Applied Catalysis A:General, 2005. 280(1): p. 75-82.
    55. Allan, J.R., N.D. Baird, and A.L. Kassyk, Some First Row Transition Metal Complexes of Nicotinamide and Nicotinic Acid. Journal of Thermal Analysis, 1979. 16: p. 79-90.
    56. Szablowicz, M. and E. Kita, New Chromium (III) - Nicotinate Complexes. Kinetics and Mechanism of Nicotinate Ligand Liberation in Acidic Media. Transition Metal Chemistry, 2005. 30: p. 623-629.
    57. Jingyan, S., L. Jie, D. Yun, H. Ling, Y. Xin, W. Zhiyong, L. Yuwen, and W. Cunxin, Investigation of Thermal Behavior of Nicotinic Acid. Journal of Thermal Analysis and Calorimetry, 2008. 93: p. 403-409.
    58. Marcus, Y. and I. Eliezer, The Stability of Mixed Complexe in Solution. Coordination Chemistry Reviews, 1969. 4: p. 273-322.
    59. Irving, H.M.N.H. and Williams, The Stability of Transition - Metal Complexes. Journal of Chemical Society, 1953. 637: p. 3192-3210.
    60. Ahrland, S., Chatt, J., and Davies N.R., The Relative Affinities of Ligand Atom for Acceptor Molecules and Ions. Quart. Rev. Chem. Soc., 1958. 12: p. 265-276.
    61. Pearson, R.J., Hard and Soft Acids and Bases. Journal of the America Chemical Society, 1963. 85: p. 3533-3539.
    62. Basolo, F. and R.C. Johnson., Coordination Chemistry: The Chemistry of Metal Complexes. Vol. 35. 1964, Menlo Park, California: Benjamin, W.A., Inc.
    63. Nicholls, D., Complexes and First-Row Transition Elements. 1975, New York: American Elsevier Publishing Co., Inc.
    64. Fazary, A.E., A.F. Mohamed, and N.S. Lebedeva, Protonation Equilibria Studies of the Standard a-Amino Acids in NaNO3 Solutions in Water and in Mixtures of Water and Dioxane. J. Chem. Thermodynamics, 2006. 38: p. 1467-1473.
    65. Sovago, I., T. Kiss, and A. Gergely, Critical Survey of The Stability Constant of Complexes of Aliphatic Amino Acids. International Union of Pure and Applied Chemistry 1993. 65(5): p. 1029-1080.
    66. Perkins, D.J., A Study of the Effect of Amino Acid Structure on the Stabilities of the Complexes Formed with Metals of Group II of the Periodic Classification. Biochemical Journal, 1953. 55: p. 649-652.
    67. McAuliffe, C.A., J.V. Quagliano, and L.M. Vallarino, Metal Complexes of the Amino Acid DL-Methionine. Inorganic Chemistry, 1966. 5(11): p. 1996-2003.
    68. Reddy, P.R. and E. Venkatadri, Influence of Non-coordinated Aliphatic Side Chains of Amino Acids on the Hydrophobic Interactions Involving Purine Nucleotide Complexes. Chemical Science, 1998. 110(2): p. 97-106.
    69. Malik, G.S., S.P. Singh, and J.P. Tandon, Mixed Ligand Complexes Involving Ligands of Biological Importance [Cu (II)-1,10-Phenanthroline or 2,2'-Bipyridyl-a-Amino Acids]. Monatshefte fur Chemie, 1979. 110: p. 149-155.
    70. Saxena, D.R.S. and D.S.K. Dhawan, Polarographic Study of the Reduction of Cadmium(II) and Lead(II) in DL-Norleucine Media. Journal Fur Praktische Chemie, 1984. 326(5): p. 845-847.
    71. Milicevic, A. and N. Raos, Estimation of Stability Constants with Connectivity Index: Development of Bivariate and Multivariate Linear Models for Copper (II) Chelates with Oligopeptides. Croatica Chemica Acta, 2009. 82(3): p. 663-639.
    72. Milicevic, A. and N. Raos, Estimation of stability Constants of Cadmium(II) bis-Complexes with Amino Acids by Model Based on 3Xu Connectivity Index. Acta Chimica Slovenica, 2010. 57: p. 866-871.
    73. Albert, A., Quantitative Studies of the Avidity of Naturally Occuring Substances for Trace Metals. I. Amino Acids Having Only Two Ionizing Groups. Biochemical Journal, 1950. 47: p. 531-538.
    74. Rehmani, F.S., Co-ordination of Biologically Important Trace Metals by Microbial Iron Chelators and Their Analogs. 1997, University of Karachi: Karachi.
    75. Abu-Bakr, M.S., H.M. Rageh, E.Y. Hashem, and M.H. Moustafa, Studies on the Mixed-Ligand Complexes of Copper (II) with Gallic Acid and Pyridine Carboxylic Acids and Their Benzologues. Monatshefte fur Chemie, 1994. 125: p. 1197-1205.
    76. Elinany, G.A., F.M. Ebeid, A.M. Zahra, and F.I. Ziedan, Polarography of Metal-Gallic Complexes. J. Electroanal Chem., 1976. 72: p. 363-369.
    77. Andjelkovic, M., J.V. Camp, B.D. Meulenaer, G. Depaemelaere, C. Socaciu, M. Verloo, and R. Verhe, Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups. Journal of Food Chemistry 2006. 98: p. 23-32.
    78. Kazmi, S.A., M.S. Qureshi, and Z. Maqsood, Reactivity of an Iron(III) Complex of Gallic Acid. Inorganica Chimica Acta, 1987. 137: p. 151-154.
    79. Powell, H.K.J. and M.C. Taylor, Interaction of Iron(II) and Iron(III) with Gallic Acid and its Homologues: a Potentiometric and Spectrophotometric Study. Australian Journal of Chemistry, 1982. 35: p. 739-756.
    80. Perrin, D.D., Stability Constants of Metal-Ion Complexes: Part B. Organic Ligands, in International Union of Pure and Applied Chemistry, Pergamon Press. p. 527.
    81. Erdemgil, F.Z., S.Sanli, N. Sanli, G. Ozkan, J. Barbosa, J. Guiteras, and J.L. Beltran, Determination of pKa Values of Some Hydroxylated Benzoic Acids in Methanol-Water Binary Mixtures by LC Methodology and Potentiometry. Talanta, 2007. 72: p. 489-496.
    82. Hughes, E.B., H.H.G. Jellinek, and B.A. Ambrose, Nicotinic Acid. Ultraviolet Absorption Spectrum and Dissociation Constants. Journal of Physicsal Chemistry, 1949. 53(3): p. 414-423.

    83. Coughlin, B.R. and A.T. Stone, Nonreversible Adsorption of Divalent Metal Ions (MnII, CoII, NiII, CuII and PbII) onto Goethite: Effects of Acidification, FeII Addition and Picolinic Acid Addition. Environmental Science & Technology, 1995. 29: p. 2445-2455.
    84. Anagnostopoulos, A., R.W. Matthews, and R.A. Walton, Studies on Metal Carboxylates. Part II. Cobalt(II) and Nickel(II) Complexes of Certain Pyridine Carboxylic Acids and Pyridine-3-Sulfonic Acid: Magnetic and Spectral Studies. Canadian Journal of Chemistry, 1972. 50: p. 1307-1314.
    85. Wu, C.D., C.Z. Lu, H.H. Zhuang, and J.S. Huang, Structure and Magnetic Property of a New 3D Nicotinic Acid Bridged Nickel Polymer. Z. Anorg. Allg. Chem., 2003. 629: p. 693-696.
    86. Ahuja, I.S., R. Singh, and C.P. Rai, Complexes of Copper (II) with Nicotinic Acid and Some Related Ligands. Transition Metal Chemistry, 1977. 2: p. 257-260.
    87. Cooper, J.A., B.F. Anderson, P.D. Buckley, and L.F. Blackwell, Structure and Biological Activity of Nitrogen and Oxygen Coordinated Nicotinic Acid Complexes of Chromium. Inorganica Chimica Acta, 1984. 91: p. 1-9.
    88. Abu-Youssef, M.A.M., Two New 3D Network Structures: [Cd3(nic)4(N3)2(H2O)]n and [Zn(nic)(N3)]n (nic=nicotinate anion). Polyhedron, 2005. 24: p. 1829-1836.
    89. Escoda, M.L., F.d.l. Torre, and V. Salvado, The Formation of Mixed Ligand Complexes of Fe(III) with Phosphoric and Citric Acids in 0.5 M NaNO3 Aqueous Solutions. Polyhedron, 1999. 18: p. 3269-3274.
    90. Gans, P., A. Sabatini, and A. Vacca, Investigation of Equilibria in Solution. Determination of Equilibrium Constants with the HYPERQUAD Suite of Programs. Talanta 1996. 43(10): p. 1739-1753.
    91. Alderighi, L., P. Gans, A. Ienco, D. Peters, A. Sabatini, and A. Vacca, Hyperquad Simulation and Speciation (HySS): a Utility Program for the Investigation of Equilibria Involving Soluble and Partially Souble Species. Coordination Chemistry Reviews, 1999. 184: p. 311-318.
    92. Ertokus, G.P. and A.H. Aktas, Determination of The Dissociation Constant of Some Subtituted Phenols by Potentiometric Method in Acetonitrile-Water Mixtures. SDU Journal of Science, 2010. 5(1): p. 60-66.
    93. Hong, C.p., D.w. Kim, K.y. Choi, C.t. Kim, and Y.g. Choi, Stability Constants of First-row Transition Metal and Trivalent LanthanideMetal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids. Bull.Korean Chem.Soc, 1999. 20(3): p. 297-300.
    94. Khatoon, Z. and K. Uddin, Potentiometrtic Investigations on the Cadmium(II) - Amino Acid - Imidazole Systems (Amino Acid = Glycine, DL-Alanine or DL-Valine). Polyhedron, 1990. 9(20): p. 2437-2442.
    95. Khalil, M.M. and R.K. Mahmoud, Solution Equilibria of Ternary Systems Involving Transition Metal Ions, Hydrxamic Acids and Bioligands. J. Chem. Eng. Data, 2010. 55: p. 789-797.

    QR CODE