簡易檢索 / 詳目顯示

研究生: 張鈞凱
Chun-Kai Chang
論文名稱: 應用基因演算法為基礎之直覺模糊加權c排序均值演算法於分群分析之研究
Application of Genetic Algorithm Based Intuitionistic Fuzzy Weighted c-ordered-means Algorithm to Cluster Analysis
指導教授: 郭人介
Ren-Jieh Kuo
口試委員: 蔡介元
Chieh-Yuan Tsai
歐陽超
Chao Ou-Yang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 93
中文關鍵詞: 分群分析啟發式演算法實數型基因演算法特徵權重異常值直覺模糊集合模糊c均值演算法模糊c排序均值演算法
外文關鍵詞: Clustering analysis, Meta-heuristics, Real-coded genetic algorithm, Feature-weighted, Outlier, Intuitionistic fuzzy sets, Fuzzy c-means algorithm, Fuzzy c-ordered-means algorithm
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著資訊科技的發展,越來越多領域開始藉由資料探勘的方法來分析資料,其中的分群分析已被廣泛應用,如顧客區隔、圖像分割等,希望能將資料轉化成有利用價值的資訊。然而,沒有任何一個分群演算法能適用於所有資料集,以及有效因應具有異常值的資料集。此外,在現實世界的資料集中,每個特徵給予的影響度必定不同,但很少分群演算法解決此問題。因此,本研究提出了直覺模糊加權c排序均值演算法(intuitionistic fuzzy weighted c-ordered-means, IFWCOM),其結合了直覺模糊集合(intuitionistic fuzzy sets, IFSs), 特徵權重(feature-weighted)及模糊c排序均值演算法(fuzzy c-ordered-means, FCOM)來處理上述所提之問題。此外,本研究進一步將其結合實數型基因演算法(real-coded genetic algorithm),以提升分群的結果,其被命名為基因演算法為基礎之直覺模糊加權c排序均值演算法(GA-IFWCOM)。接著,將這些方法對Iris、Wine、wbc、wbcd、Glass、Seeds、Pima Indians、Vowel、Flame及Breast Tissue十個資料集進行分群,並將其結果與其他分群演算法進行比較,包括K均值分群演算法、模糊c均值演算法、直覺模糊c均值演算法、特徵權重模糊c均值演算法及模糊c排序均值演算法。實驗結果顯示,基因演算法為基礎之直覺模糊加權c排序均值演算法(GA-IFWCOM)在大多數的資料集中,能獲得較其他分群演算法更加傑出的表現。


    Recently, with the advance of the information technology, many fields use data mining to transform data into useful information. Clustering analysis is a very important technology in data mining which has been widely applied in many fields, such as customer segmentation, image segmentation and so on. However, there is no clustering methods which are suitable for all kinds of datasets. For instance, the dataset has outliers. In the real world dataset, the impact of every feature is different. However, seldom researches tried to solve this problem. Thus, this study proposes an intuitionistic fuzzy weighted c-ordered-means (IFWCOM) algorithm which combines the intuitionistic fuzzy sets (IFSs), feature-weighted, and fuzzy c-ordered-means (FCOM) together. Moreover, this study uses genetic algorithm to improve the clustering performance of IFWCOM algorithm. This method is called real-coded genetic algorithm-based IFWCOM (GA-IFWCOM) algorithm. Then, ten datasets including Iris, Wine, wbc, wbcd, Glass, Seeds, Pima Indians, Vowel, Flame and Breast Tissue are employed to verify the proposed algorithm’s clustering performance with the other clustering algorithms which are K-means, fuzzy c-means (FCM), intuitionistic fuzzy c-means (IFCM), improved feature-weighted fuzzy c-means (IFWFCM), and fuzzy c-ordered-means (FCOM) algorithms. According to the experimental results, the GA-IFWCOM algorithm has the better clustering accuracy than the other clustering algorithms for most of datasets.

    摘要 I ABSTRACT II 誌謝 III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Scope and Constrains 3 1.4 Research Framework 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Cluster Analysis 5 2.2 Fuzzy c-means Algorithm 7 2.3 Fuzzy c-ordered-means Algorithm 10 2.4 Intuitionistic Fuzzy c-means Algorithm 15 2.4.1 Intuitionistic Fuzzy sets 15 2.4.2 Intuitionistic Fuzzy c-means Algorithm 17 2.5 Feature-Weighted Fuzzy c-means Algorithm 19 2.6 Genetic Algorithm for clustering 22 CHAPTER 3 METHODOLOGY 24 3.1 Methodology Framework 24 3.2 Data Preprocessing 25 3.3 Intuitionistic Fuzzy Weighted c-ordered-means Algorithm 25 3.4 Genetic Algorithm-based IFWCOM Algorithm 29 CHAPTER 4 EXPERIMENTAL RESULTS 32 4.1 Datasets 32 4.2 Performance Measurement 33 4.3 Parameters setting 33 4.3.1 Parameters for Iris dataset 35 4.3.2 Parameters 38 4.4 Computational Results 39 4.5 Statistical Hypothesis 43 CHAPTER 5 CONCLUSIONS 48 5.1 Conclusions 48 5.2 Contributions 48 5.3 Future Research 48 REFERENCES 50 APPENDIX 53

    Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87-96.
    Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms: Kluwer Academic Publishers.
    Bezdek, J. C., Boggavarapu, S., Hall, L. O., & Bensaid, A. (1994). Genetic algorithm guided clustering. Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on.
    Birgin, E. G., Martínez, J. M., & Raydan, M. (2000). Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 10(4), 1196-1211.
    Chaira, T. (2011). A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computing, 11(2), 1711-1717.
    Clarke, B. S., Fokoué, E., & Zhang, H. H. (2009). Principles and Theory for Data Mining and Machine Learning: Springer.
    Das, S., Abraham, A., & Konar, A. (2008). Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm. Pattern Recognition Letters, 29(5), 688-699.
    Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 33-57.
    Fan, J., Han, M., & Wang, J. (2009). Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation. Pattern Recognition, 42(11), 2527-2540.
    Fu, H., & Elmisery, A. M. (2009). A new feature weighted fuzzy c-means clustering algorithm. Algarve, Portugal, 11-18.
    Gan, G., Ma, C., & Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications: SIAM.
    Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning: Addison-Wesley Longman Publishing Co., Inc.
    Graves, D., & Pedrycz, W. (2010). Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study. Fuzzy sets and systems, 161(4), 522-543.
    Han, J., Kamber, M., & Pei, J. (2006). Data Mining, southeast asia edition: Concepts and techniques: Morgan kaufmann.
    Holland, J. (1975). Adaption in Natural and Artificial Systems, JH Holland: University of Michigan Press, Ann Arbor, MI.
    Huang, J. Z., Ng, M. K., Rong, H., & Li, Z. (2005). Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 657-668.
    Huber, P. J. (2011). Robust Statistics International Encyclopedia of Statistical Science (pp. 1248-1251): Springer.
    Hung, W.-L., Yang, M.-S., & Chen, D.-H. (2008). Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters, 29(9), 1317-1325.
    Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data (Vol. 6): Prentice hall Englewood Cliffs.
    Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
    Jimenez, J., Cuevas, F., & Carpio, J. (2007). Genetic algorithms applied to clustering problem and data mining. Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization. World Scientific and Engineering Academy and Society (WSEAS).
    Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology, 17, 176-188.
    Khotimah, B. K., Irhamni, F., & Sundarwati, T. (2016). A Genetic algorithm for optimized initial centers K-means clustering in SMEs. Journal of Theoretical and Applied Information Technology, 90(1), 23.
    Krishna, K., & Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433-439.
    Leski, J. M. (2016). Fuzzy c-ordered-means clustering. Fuzzy Sets and Systems, 286, 114-133.
    MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
    Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern Recognition, 33(9), 1455-1465.
    Michielssen, E., Ranjithan, S., & Mittra, R. (1992). Optimal multilayer filter design using real coded genetic algorithms. IEE Proceedings J (Optoelectronics), 139(6), 413-420.
    Murthy, C. A., & Chowdhury, N. (1996). In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 17(8), 825-832.
    Pedrycz, W., & Rai, P. (2008). Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets and Systems, 159(18), 2399-2427.
    Pizzuti, C., & Procopio, N. (2016). A K-means based genetic algorithm for data clustering. International Joint Conference SOCO’16-CISIS’16-ICEUTE’16.
    Sumathi, S., Hamsapriya, T., & Surekha, P. (2008). Evolutionary intelligence: an introduction to theory and applications with Matlab: Springer Science & Business Media.
    Taguchi, G. (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes: Asian productivity organization.
    Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining: Pearson Education.
    Wang, X., Wang, Y., & Wang, L. (2004). Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 25(10), 1123-1132.
    Xing, H.-J., & Ha, M.-H. (2014). Further improvements in feature-weighted fuzzy C-means. Information Sciences, 267, 1-15.
    Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. Neural Networks, IEEE Transactions on, 16(3), 645-678.
    Xu, Z., & Wu, J. (2010). Intuitionistic fuzzy C-means clustering algorithms. Journal of Systems Engineering and Electronics, 21(4), 580-590.
    Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190.
    Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

    無法下載圖示 全文公開日期 2023/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE