簡易檢索 / 詳目顯示

研究生: 蔡雅如
Ya-Ru Tsai
論文名稱: 適用於LTE系統內M2M通訊之考量效率及優先權的隨機存取控制機制設計
Design of Random Access Control Schemes for the M2M Communication in LTE Considering Efficiency and Priority
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 馮輝文
Huei-Wen Ferng
蔡志宏
Zsehong Tsai
吳中實
Jung-Shyr Wu
范欽雄
Chin-Shyurng Fahn
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 58
中文關鍵詞: 隨機存取機器對機器長期演進
外文關鍵詞: Random Access, Machine-to-Machine, LTE
相關次數: 點閱:288下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技的發展,連網技術也愈來愈普及,許多的裝置開始與網路做連結,其中機器類型通訊所占比例也大幅提升,因蜂巢式網路的覆蓋範圍及方便性,其已成為機器對機器(Machine-to-Machine, M2M)通訊的連網選擇,雖然M2M裝置一般發送的資料封包不大,但其數量龐大,在短時間內有眾多的裝置要求資源,勢必會造成競爭模式下的隨機存取發生碰撞的情形,使得成功存取的機率大幅下降,對服務品質造成影響,為此,本碩士論文著重於減緩大量M2M 裝置進行隨機存取時對系統產生的影響,將設計隨機存取控制機制,以減輕碰撞情形;並考慮到資源的使用效率,另一方面,透過前置碼使用集合的區分,讓傳送時發生碰撞的裝置能夠有機會和首次傳送的裝置分開競爭,以降低延遲,使能滿足延遲需求的裝置可以增加;最後,因為資料種類的不同,有些資料有即時性,我們進一步加入優先權的安排,事實上,在長期演進技術(Long-Term Evolution, LTE)系統中,H2H(Human-to-Human, H2H)和M2M通訊的共存也是一項議題,因此,在本碩士論文中,我們可以將H2H通訊的使用者視為高優先權的類別。透過模擬的驗證,所提機制將可達成預期的效果,除能夠在系統負載高及低時維持隨機存取效率外,也能降低平均延遲。


    As the technology evolves, networking technologies become more and more popular.As an increasing amount of devices are connected to a network, the machine-to-machine (M2M) communication has become pervasive. Because of a better coverage solution provided by the cellular network, it is one of networks which can be chosen for the M2M communication. Although the data size is small, the number of M2M devices is perhaps huge. When a lot of devices are trying to access the network in a short period, collisions are inevitable, leading to communication failure and degradation of service. To address such an issue, how to alleviate collisions in the random access of the long-term evolution (LTE) system is considered when M2M devices are added. We try to propose a random access scheme to enhance efficiency. By splitting the preamble into two sets, it is able to reduce the delay for M2M devices suffering from preamble collisions. The two sets include the one of M2M devices which never tried before and the one of backlogged M2M devices. Additionally, priority is considered for devices which can not tolerate a longer delay and the others. Actually, the coexistence M2M and human-to-human (H2H) devices form an issue to be addressed. This allows us to let H2H devices have a priority higher than M2M devices. Finally, our simulation results demonstrate that our proposed scheme can achieve the goal of delay reduction and access efficiency enhancement regardless of traffic loads within the network.

    論文指導教授推薦書. . . . . . . . . . . . . . . . . .i 考試委員審定書. . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . .iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . .v 表目錄. . . . . . . . . . . . . . . . . . . . . . .vii 圖目錄. . . . . . . . . . . . . . . . . . . . . . viii 第一章、緒論. . . . . . . . . . . . . . . . . . . . .1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . .1 1.2 長期演進技術簡介. . . . . . . . . . . . . . . . .2 1.3 研究背景. . . . . . . . . . . . . . . . . . . . .3 1.4 論文之架構. . . . . . . . . . . . . . . . . . . .4 第二章、相關文獻探討. . . . . . . . . . . . . . . . .5 2.1 由競爭轉化為免競爭. . . . . . . . . . . . . . . .5 2.2 限制存取層級機制. . . . . . . . . . . . . . . . .6 2.3 動態調整採用之控制機制. . . . . . . . . . . . . .9 2.4 存取控制及資源分配之結合. . . . . . . . . . . . .9 2.5 M2M及H2H間的影響. . . . . . . . . . . . . . . . 13 2.6 優先權設置. . . . . . . . . . . . . . . . . . . 13 第三章、前置碼分配及存取機率設計. . . . . . . . . . 16 3.1 範圍界定. . . . . . . . . . . . . . . . . . . . 17 3.2 前置碼及存取機率配置. . . . . . . . . . . . . . 19 3.3 降低超過延遲需求的裝置數量. . . . . . . . . . . 22 3.4 優先權配置. . . . . . . . . . . . . . . . . . . 24 第四章、數值結果與討論. . . . . . . . . . . . . . . 25 4.1 模擬環境參數設定. . . . . . . . . . . . . . . . 25 4.2 時差校正值之影響. . . . . . . . . . . . . . . . 26 4.3 不同機制間之效能比較. . . . . . . . . . . . . . 31 4.4 優先權考量. . . . . . . . . . . . . . . . . . . 37 第五章、結論. . . . . . . . . . . . . . . . . . . . 44 參考文獻. . . . . . . . . . . . . . . . . . . . . . 45 誌謝. . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] T. P. C. de Andrade, C. A. Astudillo, and N. L. S. da Fonseca, “Allocation of control resources for machine-to-machine and human-to-human communications over LTE/LTE-A networks,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 366–377, Jun. 2016.
    [2] E. Soltanmohammadi, K. Ghavami, and M. Naraghi-Pour, “A survey of traffic issues in machine-to-machine communications over LTE,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 865–884, Dec. 2016.
    [3] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 12), 3GPP TS 36.211. Jul. 2015.
    [4] A. Laya, L. Alonso, P. Chatzimisios, and J. Alonso-Zarate, “Massive access in the random access channel of LTE for M2M communications: An energy perspective,” in Proc. IEEE International Conference on Communication Workshop (ICCW), pp. 1452–1457, Jun. 2015.
    [5] A. Biral, M. Centenaro, A. Zanella, L. Vangelista, and M. Zorzi, “The challenges of M2M massive access in wireless cellular networks,” Digital Communications and Networks, vol. 1, no. 1, pp. 1–19, Feb. 2015.
    [6] G. Foddis, R. G. Garroppo, S. Giordano, G. Procissi, S. Roma, and S. Topazzi, “On RACH preambles separation between human and machine type communication,” in Proc. IEEE International Conference on Communications (ICC), pp. 1–6, May 2016.
    [7] V. B. Mišić, J. Mišić, and D. Nerandzic, “Extending LTE to support machine-type communications,” in Proc. IEEE International Conference on Communications (ICC), pp. 6977–6981, Jun. 2012.
    [8] O. Arouk, A. Ksentini, and T. Taleb, “How accurate is the RACH procedure model in LTE and LTE-A?,” in Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 61–66, Sep. 2016.
    [9] T. P. C. de Andrade, C. A. Astudillo, and N. L. S. da Fonseca, “The impact of massive machine type communication devices on the access probability of human-to-human users in LTE networks,” in Proc. IEEE Latin-America Conference on Communications (LATINCOM), pp. 1–6, Nov. 2014.
    [10] 3GPP, Tech. Specif. Group Radio Access Network - Study on RAN Improvements for Machine-type Communications (Release 11), 3GPP TR 37.868. Sep. 2011.
    [11] L. M. Bello, P. Mitchell, and D. Grace, “Application of Q-learning for RACH access to support M2M traffic over a cellular network,” in Proc. 20th European Wireless Conference, pp. 1–6, May 2014.
    [12] L. M. Bello, P. Mitchell, and D. Grace, “Frame based back-off for Q-learning RACH access in LTE networks,” in Proc. Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 176–181, Nov. 2014.
    [13] L. M. Bello, P. Mitchell, D. Grace, and T. Mickus, “Q-learning based random access with collision free RACH interactions for cellular M2M,” in Proc. 9th International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 78–83, Sep. 2015.
    [14] M. Hasan, E. Hossain, and D. Niyato, “Random access for machine-to-machine communication in LTE-advanced networks: Issues and approaches,” IEEE Communications Magazine, vol. 51, no. 6, pp. 86–93, Jun. 2013.
    [15] S. Duan, V. Shah-Mansouri, and V. W. S. Wong, “Dynamic access class barring for M2M communications in LTE networks,” in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 4747–4752, Dec. 2013.
    [16] M. K. Giluka, A. Prasannakumar, N. Rajoria, and B. R. Tamma, “Adaptive RACH congestion management to support M2M communication in 4G LTE networks,” in Proc. IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), pp. 1–6, Dec. 2013.
    [17] M. Y. Cheng, G. Y. Lin, H. Y. Wei, and A. C. C. Hsu, “Overload control for machine-type-communications in LTE-Advanced system,” IEEE Communications Magazine, vol. 50, no. 6, pp. 38–45, Jun. 2012.
    [18] C. Y. Oh, D. Hwang, and T. J. Lee, “Joint access control and resource allocation for concurrent and massive access of M2M devices,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4182–4192, Aug. 2015.
    [19] Y. Liu, F. Pingzhi, and H. Li, “A preamble allocation method for M2M traffics in 3GPP LTE-A networks,” in Proc. 7th International Workshop on Signal Design and its Applications in Communications (IWSDA), pp. 180–185, Sep. 2015.
    [20] H. Y. Hwang, S. M. Oh, C. Lee, J. H. Kim, and J. Shin, “Dynamic RACH preamble allocation scheme,” in Proc. International Conference on Information and Communication Technology Convergence (ICTC), pp. 770–772, Oct. 2015.
    [21] N. Zangar, S. Gharbi, and M. Abdennebi, “Service differentiation strategy based on MACB factor for M2M communications in LTE-A networks,” in Proc. 13th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 693–698, Jan. 2016.
    [22] L. Guan, B. Yan, Z. Guo, and Y. Gong, “Priority-based random access control mechanism for M2M communications,” in Proc. 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 2313–2317, Oct. 2016.
    [23] Y. C. Pang, G. Y. Lin, and H. Y. Wei, “Context-aware dynamic resource allocation for cellular M2M communications,” IEEE Internet of Things Journal, vol. 3, no. 3, pp. 318–326, Jun. 2016.
    [24] K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim, and J. Y. Ahn, “A novel random access for fixed-location machine-to-machine communications in OFDMA based systems,” IEEE Communications Letters, vol. 16, no. 9, pp. 1428–1431, Sep. 2012.

    QR CODE