簡易檢索 / 詳目顯示

研究生: 蔡宛融
Wan-Jung Tsai
論文名稱: 窄頻物聯網隨機存取通道資源配置之優化
Optimization of NPRACH Resource Configuration in NB-IoT
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 鄭瑞光
Ray-Guang Cheng
黃正光
Jeng-Kuang Hwang
王瑞堂
Jui-Tang Wang
黎碧煌
Bih-Hwang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 29
中文關鍵詞: 窄頻物聯網窄頻隨機存取通道多通道時槽式阿羅哈隨機存取
外文關鍵詞: NB-IoT, NPRACH, multi-channel slotted ALOHA, random access
相關次數: 點閱:348下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網是第三代合作夥伴計劃用於支援廣域物聯網應用的標準。本篇論文提出一窄頻隨機存取通道的資源配置優化方式,使用多通道時槽式阿羅哈系統分析模型演示不同情形下封包之”重複機制”與”重傳機制”的權衡,將該分析模型延伸至窄頻物聯網之分析,並基於由實體層獲得的結果進行窄頻隨機存取通道的資源配置。該優化方式可以藉由模擬結果得到驗證。


    Narrowband internet of things (NB-IoT) is a 3rd generation partnership project (3GPP) standard aiming at supporting wide area Internet of Things (IoT) applications. This work presents a methodology to optimize the resource allocation for NPRACH. We utilize a simple S-ALOHA model to demonstrate the tradeoff between ‘repetition’ and ‘retransmission’ under different situations. The simple model is then extended to analyze the performance of NB-IoT NPRACH. Finally, we utilize the model to set the NPRACH resource configuration based on the results obtained from the physical layer. The optimization methodology is verified by computer simulations.

    Table of Contents 論文摘要 4 Abstract 5 Table of Contents 6 List of Figures 7 List of Tables 8 Chapter 1 Introduction 9 Chapter 2 System Model 13 A. Single-device Transmission 14 B. Multiple-device Transmissions 15 1) Identical Maximum Air Time without Backoff 16 2) Identical Maximum Air Time with Backoff 16 3) Identical Maximum Number of Transmissions with Backoff 17 Chapter 3 Analytical Model 19 Chapter 4 Numerical Results 22 Chapter 5 Conclusion 27 References 28

    [1]. Y. P. E. Wang et al., "A primer on 3GPP narrowband internet of things," in IEEE Communications Magazine, vol. 55, no. 3, pp. 117-123, March 2017.
    [2]. 3GPP TS 36.321, “Medium access control (MAC) protocol specification,” V13.2.0, June 2016.
    [3]. 3GPP TS 36.331, “Radio resource control (RRC) protocol specification,” V13.2.0, June 2016.
    [4]. R. Harwahyu, R. G. Cheng and C. H. Wei, “Investigating the performance of the random access channel in NB-IoT,” in IEEE 86th Vehicular Technology Conference, September 2017.
    [5]. X. Lin, A. Adhikary and Y. P. Eric Wang, "Random access preamble design and detection for 3GPP narrowband IoT systems," in IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 640-643, December 2016.
    [6]. 3GPP, TS 36.211, “Physical channels and modulation,” V13.2.0, July 2016.
    [7]. 3GPP TS 36.104, “Base station (BS) radio transmission and reception” V13.7.0, March 2017.
    [8]. 元智大學通訊系黃正光教授實驗室實驗結果
    [9]. C. H. Wei, G. Bianchi and R. G. Cheng, "Modeling and analysis of random access channels with bursty arrivals in OFDMA wireless networks," in IEEE Transactions on Wireless Communications, vol. 14, no. 4, pp. 1940-1953, April 2015.
    [10]. 3GPP TSG RAN Meeting #70 RP-152284, “Revised work item: Narrowband IoT (NB-IoT),” December 2015.
    [11]. A. Laya, L. Alonso, and J. Alonso-Zarate, “Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives,” in IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 4–16, 2014.
    [12]. P. Zhou, H. Hu, H. Wang, and H. H. Chen, “An efficient random access scheme for OFDMA systems with implicit message transmission,” in IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2790–2797, July 2008.
    [13]. S. Kim et al., “Performance evaluation of random access for M2M communication on IEEE 802.16 network,” in. 14th International Conference on Advanced Communication Technology (ICACT) , pp. 278–283, February 2012.
    [14]. R. C. D. Paiva, R. D. Vieira, and M. Saily, “Random access capacity evaluation with synchronized MTC users over wireless networks,” in IEEE 73rd Vehicular Technology Conference (VTC Spring) , pp. 1–5, May 2012.
    [15]. L. Kleinrock and F. Tobagi, “Packet switching in radio channels part I Carrier sense multiple-access modes and their throughput delay characteristics,” in IEEE Transactions on Communications, vol. Com-23, no. 12, pp. 1400–1416, December 1975.
    [16]. A. B. Behroozi-Toosi and R. R. Rao, “Delay upper bounds for a finite user random-access system with bursty arrivals,” in IEEE Transactions on Communications, vol. 40, no. 3, pp. 591–596, March 1992.
    [17]. T. Kim; D. M. Kim; N. Pratas; P. Popovski; D. K. Sung, "An enhanced access reservation protocol with a partial preamble transmission mechanism in NB-IoT systems," in IEEE Communications Letters, 2017, In press.
    [18]. 3GPP TR 45.820, “Technical specification group GSM/EDGE radio access network; cellular system; support for ultra low complexity and low throughput Internet of Things; (Release 13)” V13.1.0, August 2015.

    QR CODE