簡易檢索 / 詳目顯示

研究生: 王佳田
Chia-Tien Wang
論文名稱: 新穎環烯烴共聚物/陽離子型光起始劑質子交換膜之物性及電學性質研究
The study on Physical Properties and Electronic Properties for Novel Cyclo Olefin Copolymer / Cationic Photo Initiator Proton Exchange Membrane
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
none
李俊毅
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 106
中文關鍵詞: 燃料電池質子交換膜光起始劑甲醇滲透環烯烴共聚物
外文關鍵詞: fuel cell, proton exchange membrane, photo initiator, methanol crossover, COC
相關次數: 點閱:189下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討環烯烴共聚物摻合陽離子型光起始劑的混摻薄膜在直接甲醇燃料電池的工作環境下之適用性。實驗上經由抗張試驗去分析混摻薄膜的力學性質,發現其應力應變均隨著光起始劑比例提高而降低。使用掃描式電子顯微鏡進行型態觀察及元素分析,發現光照後其碘,硫,氟元素比例均提高,但經過水洗之後元素比例均大幅降低。使用熱重損失分析儀去觀察混摻薄膜的熱裂解過程,得知混摻膜材的熱裂解溫度高達460℃,光起始劑的熱裂解溫度為250℃,故此混摻膜材具足夠熱穩定性在直接甲醇燃料電池系統中使用。在導電率與含水率方面使用交流阻抗儀測試得知兩項性質均隨著光起始劑添加比例的增加而提升,了解到光起始劑可以幫助提升質子傳輸性質。且光照後的試片其導電率與含水率都高於光照前的試片。甲醇滲透方面,依據ASTM的E96規範使用水蒸氣滲透測試方法測量膜材對甲醇水溶液蒸氣的擴散程度。另一方面將實驗完的甲醇水溶液利用Abbe屈折度儀測量其濃度差異,藉此了解膜材對甲醇分子阻擋的能力。得知甲醇蒸氣滲透率隨著光起始劑比例的提升而降低,且實驗後甲醇水溶液的濃度隨著光起始劑比例的提高而增加,代表光起始劑比例越高的試片其阻擋甲醇分子的能力越佳。且無論是阻擋甲醇水蒸氣或是甲醇分子的能力,光照後的試片均優於光照前的試片。


    This paper explores the applicability of blended cyclo olefin copolymer films containing doping cationic photo initiator in the direct methanol fuel cell operating environment. Experimental tensile strength measurements were used to analyze the dynamic properties of the films, and yielded the finding that dynamic response fell with increasing concentration of photo initiator. A scanning electron microscope was used to perform state observations and elemental analysis; it was found that the ratios of the elements iodine, sulfur, and fluorine increased after illumination, but decreased sharply after water washing. A thermo gravimetric analyzer was used to observe the thermal decomposition process of blended films, and revealed that the decomposition temperature of the film was as high as 460°C, while the photo initiator had a decomposition temperature of 250°C. This indicates that blended films have sufficient thermal stable for use in direct methanol fuel cell systems. Use of an AC resistance meter revealed that both conductance and moisture content increased as photo initiator was added. This shows that addition of a photo initiator can help increase proton transmission properties. The conductance and moisture content of a test plate also both increased after illumination. As for methanol permeability, the ASTM E96 steam permeability test method was used to measure the diffusion of fumes from a methanol-water solution in the film. In addition, an Abbe refractometer was used to measure the concentration of the methanol-water solution used in the previous experiment and gain a better understanding of the film's ability to block methanol molecules. It was found that the diffusion of methanol-containing steam decreases with increasing photo initiator concentration, and also shown that the concentration of the methanol-water solution remaining after the experiment increases with photo initiator concentration. It was revealed that test plates with high photo initiator concentration have good ability to block methanol molecules. Finally, test plates were uniformly better able to block both methanol molecules and steam containing methanol after illumination.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅲ 誌謝……………………………………………………………………Ⅵ 目錄…………………………………………………………………VIII 圖表索引…………………………………………………………… XI 第一章 緒論..............................................1 1-1 前言……………………………………………………1 1-2 研究背景………………………………………………………4 1-2-1 質子交換膜簡介……………………………………4 1-2-2 材料背景……………………………………………7 1-3 高分子聚合物的光化學反應…………………………………9 1-3-1 光起始聚合反應系統的特點………………………10 1-3-2 自由基光起始聚合系統……………………………11 1-3-3 陽離子光敏聚合系統………………………………13 1-4 研究架構……………………………………………………16 1-5 參考文獻……………………………………………………17 第二章 文獻回顧.........................................19 2-1 前言…………………………………………………………19 2-2 Nafion®之結構及質子傳導機制………………………20 2-3 質子交換膜之種類…………………………………………23 2-4 參考文獻…………………………………………………37 第三章 環烯烴共聚物/陽離子型光起始劑質子交換膜之質子傳輸、 分子間相互作用力及物性研究……………………………48 中文摘要……………………………………………………………49 3-1 前言............................................50 3-2 實驗方法……………………………………………………53 3-2-1 COC/Cationic Photo-initiator blend films之製備 …………………………………………………………………53 3-2-2 機械力學性質測定...........................53 3-2-3 表面型態及元素分析…………………………………54 3-2-4 熱分解特性分析 ……………………………………54 3-2-5 交流阻抗分析…………………………………………54 3-2-6 水保持率分析…………………………………………55 3-2-7 甲醇滲透測試…………………………………………55 3-3 結果與討論.....................................57 3-3-1 COC/Photo-Initiator混摻膜力學性質分析………57  3-3-2 COC/Photo-Initiator混摻膜型態與元素分析 ……58 3-3-3 COC/Photo-Initiator混摻膜熱穩定性分析………60 3-3-4 COC/Photo-Initiator混摻膜甲醇蒸氣擴散效應…61 3-3-5 COC/Photo-Initiator混摻膜質子傳導效應………64 3-4 參考文獻………………………………………………66 第四章 結論 …………………………………………………73

    1.A.S. Aric`oa, S. Srinivasan, V. Antonuccia, Fuel Cells 1 (2001) 133–161.
    2.T. Arimura, D. Ostrovskii, T. Okada, G. Xie, Solid State Ionics 118 (1999)1–10.
    3.M.P. Hogarth, T.R. Ralph, Platinum Met. Rev. 46 (2004) 146–164.
    4.S. Agro, T. DeCarmine, S. DeFelice, L. Thoma, Annual Progress Report for the DOE Hydrogen Program, 2005, p. 790, US Department of Energy (DOE) website: http://www.hydrogen.energy.gov.
    5.J. Howell, Keynote Paper The Fifth International Membrane Science & Technology Conference (IMSTEC ’03), Sydney, Australia,November 10–14, 2003, website: http://www.membrane.unsw.edu.au/imstec03/content/papers/keynote/howell.pdf.
    6.Carretta, N.; Tricoli, V.; Picchioni, F. J Membr Sci 2000, 166, 189.
    7.Jung, B.; Kim, B.; Yang, J. M. J Membr Sci 2004,245, 61.
    8.Scott, D. S.; Hafele, W. Int J Hydrogen Energy 1990, 15, 727.
    9.Wiley, R. H.; Venkatachalam, T. K. J Polym Sci Part A: Polym Chem 1966, 4, 1892.
    10.Makowski, H. S.; Lundberg, R. D.; Singhal, G. H. US Patent 3, 870, 841, 1975.
    11.Li, X.; Zhao, C.; Lu, H.; Wang, Z.; Na, H. Polymer
    2005, 46, 5820.
    12. Li, L.; Zhang, J.; Wang, Y. J Membr Sci 2003, 226,159.
    13.Kim, Y.-M.; Park, K.-W.; Choi, J. H.; Park, I. S.;Sung, Y. E. Electrochem Commun 2003, 5, 571.
    14.Gil, M.; Ji, X.; Li, X.; Na, H.; Hampsey, J. E.; Lu, Y.
    J Membr Sci 2004, 234, 75.
    15.Drioli, E.; Regina, A.; Casciola, M.; Oliveti, A.;Trotta, F.; Massari, T. JMembr Sci 2004, 228, 139.
    16.Okamato, K.; Yin, Y.; Yamada, O.; Islam, M. N.;Honda, T.; Mishima, T.; Suto, Y.; Tanaka, K.;Kita, H.J Membr Sci 2005, 258, 115.
    17.Einsla, R. A.; Kim, Y. S.; Hickner, M. A.; Hong, Y.-T.; Hill, M. L.; Pivovar, B. S.; McGrath, J. E.J Membr Sci 2005, 255, 141.
    18.Kim, Y. S.; Sumner,M. J.; Harrison,W. L.; Riffle, J.S.; McGrath, J. E.; Pivovar, B. S. J Electro chem Soc 2004, 151, A2150.
    19.Miyatake, K.; Zhou, H.; Matsuo, T.; Uchida, H.;Watanabe, M.Macromolecules 2004, 37, 4961.
    20.Einsla, B. R.; Hong, Y.-T.; Kim, Y. S.; Wang, F.;Gunduz, N.; McGrath, J. E. J Polym Sci Part A:Polym Chem 2004, 42, 862.
    21.Kim, B.; Kim, J.; Jung, B. J Membr Sci 2005, 250,175.
    22.Kim, J.; Kim, B.; Jung, B. J Memb Sci 2002, 207,129.
    23.Won, J.;Choi, S.W.;Kang, Y. S.;Ha, H. Y.;Oh, I. H.;Kim, H. S.; Kim, K. T.; Jo, W. J Membr Sci 2003,214, 245.
    24.Kim, J.; Kim, B.; Jung, B.; Kang, Y. S.; Ha, H. Y.;Oh, I.-W.; Ihn, K. J Macromol Rapid Commun 2002, 23, 753.
    25.Elabd, Y. A.; Napadensky, E.; Sloan, J. M.; Crawford,D M.; Walker, C. W. J Membr Sci 2003, 217,227.
    26.Elabd, Y. A.; Napadensky, E.;Walker, C.W.;Winey,K. I. Macromolecules 2006, 39, 399.
    27.Serpico, J. M.; Ehrenberg, S. G.; Fontanella, J. J.;Jiao, X.; Perahia, D.; McGrady, K. A.; Sanders, E.H.; Kellogg, G. E.; Wnek, G. E. Macro molecules 2002, 35, 5916.
    28.Walker, M.; Baumgartner, K.-M.; Kaier, M.; Kerres,J.; Ullrich, A.; Rauchle, E. J Appl Polym Sci 1999, 74, 67.
    29.Pu, H.; Liu, Q.; Liu, G. J Membr Sci 2004, 241, 169.
    30.Wang, J. T.; Wasmus, S.; Savinell, R. F. J Electro chem
    Soc 1996, 143, 1233.
    31.Samms, S. R.;Wasmus, S.; Savinell, R. F. J Electro chem
    Soc 1996, 143, 1225.
    32.Wang, J. T.; Wainright, J. S.; Savinell, R. F.; Litt,M. J Appl Electro chem 1996, 26, 751.
    33.Kawahara, M.; Morita, J; Rikukawa, M; Sanui, K;Ogata, N. Electro chem Acta 2000, 45, 1395.
    34.Xing, B. Z.; Savadogo, O. J New Mater Electro chem Syst 1999, 2, 95.
    35.He, R.; Li, Q.; Xiao, G.; Bjerrum, N. J. J Membr Sci 2003, 226, 169.
    36.Kim, H. J.; Lim, T. H. J Ind Eng Chem 2004, 10,1081.
    37.Silva, V. S.; Weisshaar, S.; Reissner, R.; Ruffmann,
    B.; Vetter, S.; Mendes, A.; Madeira, L. J.; Nunes, S.
    J Power Sources 2005, 145, 485.
    38.Yamazaki, Y.; Jang, M. Y.; Taniyama, T. Sci Tech AdvMater 2004, 5, 455.
    39.Jang, M. Y.; Yamazaki, Y. Solid State Ionics 2004,167, 107.
    40.Jorissen, L.; Gogel, V.; Kerres, J.; Garche, J.J Power Sources 2002, 105, 267.
    41.Manea, C.;Mulder,M. Desalination 2002, 147, 179.
    42.Pu, H. T.; Liu, Q. Z.; Qiao, L.; Yang, Z. L. PolymEng Sci 2005, 45, 1395.
    43.Pu, H. T.; Liu, Q. Z. PolymInt 2004, 53, 1512.
    44.Kim, D. S.; Park, H. B.; Rhim, JW.; Lee, Y.M. Solid
    State Ionics 2005, 176, 117.
    45.Xu, W.; Lu, T.; Liu, C.; Xing, W. Electrochem Acta 2005, 50, 3280.
    46.Chang, H. Y.; Lin, C. W. J Membr Sci 2003, 218,295.
    47.Kim, D. S.; Shin, K. H.; Park, H. B.; Lee, Y. M.Macromol Res 2004, 12, 413.
    48.Park, H.; Kim, Y.; Hong, W. H.; Choi, Y. S.; Lee, H.
    Macromolecules 2005, 38, 2289.
    49.Munakata, H.; Yamamoto, D.; Kanamura, K.Chem Commun 2005, 31, 3986.
    50.Jung, D. H.; Myoung, Y.-B.; Cho, S.-Y.; Shin, D. R.;Peck, D. H. Int J Hydrogen Energy 2001, 26, 1263.
    51.Silva, V. S.; Ruffmann, B.; Silva, H.; Gallego, Y. A.;
    Mendes, A.; Madeira, L. M.; Nunes, S. P. J Power Sources 2005, 140, 34.
    52.Ponce, M. L.; Prado, L. A. S. de, A.; Silva, V.;Nunes, S. P. Desalination 2004, 162, 383.
    53.Silva, V.; Ruffmann, B.; Silva, H.; Mendes, A.;Madeira, M.; Nunes, S. Adv Matl Forum II, 2004,455, 587.
    54.Ponce, M. L.; Prado, L.; Ruffmann, B.; Richau, K.;Mohr, R.; Nunes, S. P. JMembr Sci 2003, 217, 5.
    55.Alberti, G.; Casciola, M.; Pica, M.; Di Cesare, G.Ann NYAcad Sci 2003, 984, 208.
    56.Kim, D.; Aulice Scibioh, M.; Kwak, S.; Oh, I. H.;Ha, H. Y. Electro chem Commun 2004, 6, 1069.
    57.Walker, M.; Baumgartner, K.-M.; Kaier, M.; Kerres,J.; Ullrich, A.; Rauchle, E. J Appl Polym Sci 1999, 74, 67.
    58.Hobson, L. J.; Ozu, H.; Yamaguchi, M.; Hayase, S.J Electro chem Soc 2001, 148, A1185.
    59.Mex, L.; Sussiek, M.; Muller, J. Chem Eng Commun 2003, 190, 1085.
    60.Elabd, Y. A.; Napadensky, E.;Walker, C.W.;Winey,K. I. Macromolecules 2006, 39, 399.
    61.Pivovar, B. S.;Wang, Y.; Cussler, E. L. J Membr Sci
    1999, 154, 155.
    62.Zawodzinski, T. A.; Derouin, C.; Radzinski, S.;
    Sherman, R. J.; Smith, V. T.; Springer, T. E.;
    Gottesfeld, S. J Electrochem Soc 1993, 140, 1041.
    63.Zawodzinski, T. A.; Neeman, M.; Sillerud, L. O.;
    Gottesfeld, S. J Phys Chem 1991, 95, 6040.

    QR CODE