簡易檢索 / 詳目顯示

研究生: 高琦富
Chi-Fu Gao
論文名稱: 發展製作具膠原蛋白纖維支架之心肌組織的三維生物列印技術
Development of 3D Bio-printing Technique for the Preparation of Myocardial Tissue on Collagen Fibril Scaffolds
指導教授: 王孟菊
Meng-Jiy Wang
陳賜原
Szu-Yuan Chen
口試委員: 蔡偉博
蔡曉雯
周秀慧
李振綱
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: 3D 生物列印生物墨水膠原蛋白微米顆粒細胞外基質
外文關鍵詞: 3D bioprinting, bio-ink, collagen, microsphere, extracellular matrix (ECM)
相關次數: 點閱:461下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織工程的目標是解決手術治療中所面臨的挑戰,例如捐贈器官短缺和器官移植引起的免疫排斥反應。因此,體外培養組織或人造器官成為新興的發展方向。近年來,有許多研究提出利用 3D 生物列印技術製備的人體組織或器官,進而訓練印製的人造組織或器官,確保其功能能夠應用於患者身上。而生物支架常見的材料有明膠、膠原蛋白、和海藻酸鈉等天然聚合物,該材料能夠提供優異的生物相容性以降低人體的免疫排斥反應。因此,本研究著重地發展 3D 生物列印技術將心肌細胞印製於膠原蛋白支架,且使用不同條件下製備的基材及緩衝溶液來進行誘導膠原蛋白纖維。此外,利用不同方式誘導方式製備具有 D-banding 結構的膠原蛋白纖維,其該特殊結構可提高心肌細胞的分化效率。
      本研究成功地開發出 3D 生物列印機,利用該機台所印製的心肌細胞於膠原蛋白薄膜與支架且具良好的生物相容性。透過調整與校正列印機台的參數,最適化列印速度 5 mm/s 及每層厚度 0.05 mm 可印製結構完整的膠原蛋白支架於雲母片上。本研究利用 AFM 觀察印製的膠原蛋白支架的表面形態,結果觀察可發現膠原蛋白可形成具有 D-banding 結構的纖維。此外,利用3D生物列印機將細胞印製於膠原蛋白纖維組織,細胞能更穩定的貼附於膠原蛋白纖維組織。在進行 3D 生物列印組織和器官時,根據研究結果得到的最佳化層厚可以提升列印的器官功能性和品質。這項研究的成果對於開發可用於組織工程和再生醫學的生物列印技術具有重要意義,為未來創造更多的應用潛力。


    The objective of tissue engineering is to solve the challenges faced by surgical treatment such as the shortage of donated organs and immune rejection caused by organ transplantation. Therefore, culturing tissues or artificial organs in vitro has become an emerging development direction. In recent years, many studies have proposed that human tissues or organs are prepared by 3D bioprinting technology. And then culturing in vitro to train the printed human tissues to ensure that the printed tissues or organs can be applied to the required functions of the patient. Natural polymers such as gelatin, collagen, and sodium alginate are widely applied in the preparation of bio-scaffold, which can provide excellent biocompatibility to reduce immune rejection in the human body. Therefore, this study focuses on the development of 3D bioprinting technology to print cardiomyocytes on collagen scaffolds, and uses substrates and buffer solutions prepared under different conditions to induce collagen fibers. Furthermore, collagen fibers with D-banding structure were prepared by different induction methods, and this special structure can improve the differentiation efficiency of cardiomyocytes.
    This study successfully developed a 3D bioprinting machine, and the cardiomyocytes printed on this machine have good biocompatibility with the collagen film and scaffold. By adjusting and calibrating the parameters of the printing machine, the optimal printing speed is 5 mm/s and the thickness of each layer is 0.05 mm, and the collagen scaffold with complete structure can be printed on the mica sheet. In this study, AFM was used to observe the surface morphology of 3d-bioprinted collagen scaffolds, and it was found that collagen can form fibers with D-banding structure. In addition, cells can be more stably attached to the collagen fibrils scaffold by using 3D bioprinter to print the cells on the collagen fibrils scaffold. In the future, when 3D bioprinting tissues and organs, the optimized layer thickness obtained according to the research results can improve the functionality and quality of printed organs. The results of this research are of great significance for the development of bioprinting technology that can be used in tissue engineering and regenerative medicine, creating more application potential for the future.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目標 1 第二章 文獻回顧 3 2-1 3D列印機 3 2-1-1 3D列印機的發展 3 2-1-2 3D 生物列印機 6 2-2 生物墨水 7 2-3 生物循環系統 10 第三章 研究方法與實驗設計 12 3-1實驗藥品 12 3-1-1 微米顆粒 (microsphere) 製備 12 3-1-2 海藻酸鈉生物墨水製備 12 3-1-3 膠原蛋白生物墨水製備 12 3-2 實驗儀器 13 3-2-1超音波細胞震碎機 13 3-2-2 注射器幫浦 13 3-2-3 單噴頭3D 生物列印機 13 3-2-4 雙噴頭3D 生物列印機 14 3-2-5超高速離心機 15 3-2-6體外循環系統 15 3-3實驗製程 16 3-3-1微米顆粒製備 16 3-3-2 3D生物列印機製備具有生物相容性的膠原蛋白薄膜 17 3-3-3 循環系統 17 3-3-4 膠原蛋白萃取 18 3-3-5 生物墨水製備 19 3-4 實驗分析原理 19 3-4-1 光學顯微鏡 (Optical microscope, OM) 19 3-4-2 原子力顯微鏡 (Atomic force microscope, AFM) 20 3-4-3 微孔盤分析儀 (Microplate reader) 20 3-4-4 螢光顯微鏡 (Fluorescence microscopy) 21 3-4-5 免疫組織化學染色法 (Immunohistochemistry) 21 3-4-6 羥脯氨酸測定 (Hydroxyproline assay) 22 第四章 結果與討論 34 4-1微米顆粒製備 34 4-1-1 乙醇滴定速率對所製備之微米顆粒大小影響 34 4-1-2 乙醇滴定時的溫度對所製備之微米顆粒大小影響 35 4-1-3 不同比例的Gum Arabic和Gelatin type B對製備之微米顆粒大小影響 36 4-2 3D列印機參數最佳化測試 36 4-2-1 列印速度對3D模型的影響 37 4-2-2 探討不同列印切層高度對3D模型的影響 37 4-3 探討基材和緩衝溶液對3D生物列印膠原蛋白薄膜的影響 38 4-3-1 3D生物列印膠原蛋白薄膜於PBS緩衝溶液的支撐槽 38 4-3-2 3D生物列印膠原蛋白薄膜於PK緩衝溶液的支撐槽 39 4-3-3 3D生物列印膠原蛋白薄膜於TES緩衝溶液的支撐槽 39 4-4 H9c2培養於3D生物列印膠原蛋白薄膜 40 4-4-1 種植H9c2細胞於膠原蛋白薄膜 40 4-4-2 列印H9c2細胞於膠原蛋白組織 43 第五章 結論 70 參考文獻 72

    [1] W.C. Sanderson, S. Scherbov, Faster increases in human life expectancy could lead to slower population aging, PloS one 10(4) (2015) e0121922.
    [2] C.J. McAloon, L.M. Boylan, T. Hamborg, N. Stallard, F. Osman, P.B. Lim, S.A. Hayat, The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data, International journal of cardiology 224 (2016) 256-264.
    [3] P. Sasmal, P. Datta, Y. Wu, I.T. Ozbolat, 3D bioprinting for modelling vasculature, Microphysiological systems 2 (2018).
    [4] T. Miyazaki, Y. Hotta, J. Kunii, S. Kuriyama, Y. Tamaki, A review of dental CAD/CAM: current status and future perspectives from 20 years of experience, Dental materials journal 28(1) (2009) 44-56.
    [5] V. Mazzanti, L. Malagutti, F. Mollica, FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties, Polymers 11(7) (2019) 1094.
    [6] J. Šafka, M. Ackermann, J. Bobek, M. Seidl, J. Habr, L. Bĕhálek, Use of composite materials for FDM 3D print technology, Materials science forum, Trans Tech Publ, 2016, pp. 174-181.
    [7] A. Le Duigou, M. Castro, R. Bevan, N. Martin, 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, Materials & Design 96 (2016) 106-114.
    [8] M.A. Pop, C. Croitoru, T. Bedő, V. Geamăn, I. Radomir, n. Cos, ă, Mihaela, S.M. Zaharia, L.A. Chicos, a. Milos, Ioan, Structural changes during 3D printing of bioderived and synthetic thermoplastic materials, Journal of Applied Polymer Science 136(17) (2019) 47382.
    [9] M. Milosevic, D. Stoof, K.L. Pickering, Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites, Journal of Composites Science 1(1) (2017) 7.
    [10] D. Stoof, K. Pickering, Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene, Composites Part B: Engineering 135 (2018) 110-118.
    [11] E.M. Maines, M.K. Porwal, C.J. Ellison, T.M. Reineke, Sustainable advances in SLA/DLP 3D printing materials and processes, Green Chemistry 23(18) (2021) 6863-6897.
    [12] C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chemical Society Reviews 40(11) (2011) 5588-5617.
    [13] F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polymer Chemistry 6(25) (2015) 4497-4559.
    [14] M. Padmakumar, Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques, Lasers Manuf. Mater. Process 7(3) (2020) 338-371.
    [15] D. Gu, W. Meiners, Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting, Materials Science and Engineering: A 527(29-30) (2010) 7585-7592.
    [16] E. Uhlmann, A. Bergmann, W. Gridin, Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting, Procedia Cirp 35 (2015) 8-15.
    [17] T. Boland, V. Mironov, A. Gutowska, E.A. Roth, R.R. Markwald, Cell and organ printing 2: Fusion of cell aggregates in three‐dimensional gels, The Anatomical Record Part A: discoveries in molecular, cellular, and evolutionary biology 272(2) (2003) 497-502.
    [18] A. Lee, A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, J. Bliley, P. Campbell, A. Feinberg, 3D bioprinting of collagen to rebuild components of the human heart, Science 365(6452) (2019) 482-487.
    [19] I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting, Biomaterials 76 (2016) 321-343.
    [20] B. Derby, Printing and prototyping of tissues and scaffolds, science 338(6109) (2012) 921-926.
    [21] K. Dzobo, N.E. Thomford, D.A. Senthebane, H. Shipanga, A. Rowe, C. Dandara, M. Pillay, K.S.C.M. Motaung, Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine, Stem cells international 2018 (2018).
    [22] Q. Gao, B.-S. Kim, G. Gao, Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks, Marine Drugs 19(12) (2021) 708.
    [23] C.B. Knudson, Hyaluronan and CD44: strategic players for cell–matrix interactions during chondrogenesis and matrix assembly, Birth Defects Research Part C: Embryo Today: Reviews 69(2) (2003) 174-196.
    [24] C. Antich, J. de Vicente, G. Jiménez, C. Chocarro, E. Carrillo, E. Montañez, P. Gálvez-Martín, J.A. Marchal, Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs, Acta Biomaterialia 106 (2020) 114-123.
    [25] M. Kesti, M. Müller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, M. Zenobi-Wong, A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation, Acta biomaterialia 11 (2015) 162-172.
    [26] S. Ahn, H. Lee, L.J. Bonassar, G. Kim, Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying, Biomacromolecules 13(9) (2012) 2997-3003.
    [27] R.V. Badhe, A. Chatterjee, D. Bijukumar, M.T. Mathew, Current advancements in bio-ink technology for cartilage and bone tissue engineering, Bone 171 (2023) 116746.
    [28] A.V. Persikov, J.A. Ramshaw, A. Kirkpatrick, B. Brodsky, Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability, Biochemistry 44(5) (2005) 1414-1422.
    [29] S. Ricard-Blum, The collagen family, Cold Spring Harbor perspectives in biology 3(1) (2011) a004978.
    [30] S. Liu, X. Chen, Y. Zhang, Chapter 14 - Hydrogels and hydrogel composites for 3D and 4D printing applications, in: K.K. Sadasivuni, K. Deshmukh, M.A. Almaadeed (Eds.), 3D and 4D Printing of Polymer Nanocomposite Materials, Elsevier2020, pp. 427-465.
    [31] T.J. Wess, Collagen fibril form and function, Advances in protein chemistry 70 (2005) 341-374.
    [32] N. Hanagata, T. Takemura, A. Monkawa, T. Ikoma, J. Tanaka, Pre-adsorbed type-I collagen structure-dependent changes in osteoblastic phenotype, Biochemical and biophysical Research communications 344(4) (2006) 1234-1240.
    [33] D. Tanné, E. Bertrand, L. Kadem, P. Pibarot, R. Rieu, Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system, Experiments in fluids 48 (2010) 837-850.
    [34] J.A. González-Noriega, M. Valenzuela-Melendres, A. Hernández–Mendoza, H. Astiazarán-García, M.Á. Mazorra-Manzano, E.A. Peña-Ramos, Hydrolysates and peptide fractions from pork and chicken skin collagen as pancreatic lipase inhibitors, Food Chemistry: X 13 (2022) 100247.
    [35] M. Fauzi, Y. Lokanathan, B. Aminuddin, B. Ruszymah, S. Chowdhury, Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications, Materials Science and Engineering: C 68 (2016) 163-171.
    [36] D. Li, C. Mu, S. Cai, W. Lin, Ultrasonic irradiation in the enzymatic extraction of collagen, Ultrasonics sonochemistry 16(5) (2009) 605-609.
    [37] D. Zeugolis, R. Paul, G. Attenburrow, Factors influencing the properties of reconstituted collagen fibers prior to self‐assembly: animal species and collagen extraction method, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 86(4) (2008) 892-904.
    [38] D. Yulianti, T.I. Rukmana, Isolation, purification, and characterization of bovine tendon collagen and analysis of glycine, proline, and hydroxyproline by high-performance liquid chromatography-fluorescence, International Journal of Applied Pharmaceutics 10(Special Issue 1) (2018) 311-315.
    [39] M.W. Davidson, M. Abramowitz, Optical microscopy, Encyclopedia of imaging science and technology 2(1106-1141) (2002) 120.
    [40] D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel, D.J. Müller, Imaging and manipulation of biological structures with the AFM, Micron 33(4) (2002) 385-397.
    [41] D. Filippini, S.P. Svensson, I. Lundström, Computer screen as a programmable light source for visible absorption characterization of (bio) chemical assays, Chemical Communications (2) (2003) 240-241.
    [42] R. Yuste, Fluorescence microscopy today, Nature methods 2(12) (2005) 902-904.
    [43] R. Datta, A. Gillette, M. Stefely, M.C. Skala, Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine, Journal of Biomedical Optics 26(7) (2021) 070603-070603.
    [44] A.R. Dixon, C. Bathany, M. Tsuei, J. White, K.F. Barald, S. Takayama, Recent developments in multiplexing techniques for immunohistochemistry, Expert review of molecular diagnostics 15(9) (2015) 1171-1186.
    [45] M.C. Jamur, C. Oliver, Permeabilization of cell membranes, Immunocytochemical methods and protocols (2010) 63-66.
    [46] V. Lin, J. Koenig, Raman studies of bovine serum albumin, Biopolymers: Original Research on Biomolecules 15(1) (1976) 203-218.
    [47] P. Li, G. Wu, Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth, Amino acids 50 (2018) 29-38.
    [48] K. Hofman, B. Hall, H. Cleaver, S. Marshall, High-throughput quantification of hydroxyproline for determination of collagen, Analytical biochemistry 417(2) (2011) 289-291.
    [49] G.K. Reddy, C.S. Enwemeka, A simplified method for the analysis of hydroxyproline in biological tissues, Clinical biochemistry 29(3) (1996) 225-229.
    [50] M. Karg, A. Pich, T. Hellweg, T. Hoare, L.A. Lyon, J. Crassous, D. Suzuki, R.A. Gumerov, S. Schneider, I.I. Potemkin, Nanogels and microgels: From model colloids to applications, recent developments, and future trends, Langmuir 35(19) (2019) 6231-6255.
    [51] J.D. Ogilvie-Battersby, R. Nagarajan, R. Mosurkal, N. Orbey, Microencapsulation and controlled release of insect repellent geraniol in gelatin/gum arabic microcapsules, Colloids and Surfaces A: physicochemical and Engineering Aspects 640 (2022) 128494.
    [52] M. Mardani, S. Yeganehzad, N. Ptichkina, Y. Kodatsky, O. Kliukina, N. Nepovinnykh, S. Naji-Tabasi, Study on foaming, rheological and thermal properties of gelatin-free marshmallow, Food Hydrocolloids 93 (2019) 335-341.
    [53] S. Amirabadi, J.M. Milani, F. Sohbatzadeh, Effects of cold atmospheric-pressure plasma on the rheological properties of gum Arabic, Food Hydrocolloids 117 (2021) 106724.
    [54] R. Esfahani, S.M. Jafari, A. Jafarpour, D. Dehnad, Loading of fish oil into nanocarriers prepared through gelatin-gum Arabic complexation, Food Hydrocolloids 90 (2019) 291-298.
    [55] T.-C. Yang, C.-H. Yeh, Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): the effects of printing speed, Polymers 12(6) (2020) 1334.
    [56] N. Ayrilmis, M. Kariz, J.H. Kwon, M. Kitek Kuzman, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, The International Journal of Advanced Manufacturing Technology 102 (2019) 2195-2200.
    [57] Z. Galliger, C.D. Vogt, A. Panoskaltsis-Mortari, 3D bioprinting for lungs and hollow organs, Translational Research 211 (2019) 19-34.
    [58] L. Han, J. Lin, C. Du, C. Zhang, X. Wang, Q. Feng, Effect of Mechanical Microenvironment on Collagen Self-Assembly In Vitro, Journal of Functional Biomaterials 14(4) (2023) 235.
    [59] W. Li, N. Chi, R.A. Rathnayake, R. Wang, Distinctive roles of fibrillar collagen I and collagen III in mediating fibroblast-matrix interaction: A nanoscopic study, Biochemical and biophysical research communications 560 (2021) 66-71.
    [60] V.G. Gisbert, S. Benaglia, M.R. Uhlig, R. Proksch, R. Garcia, High-speed nanomechanical mapping of the early stages of collagen growth by bimodal force microscopy, ACS nano 15(1) (2021) 1850-1857.
    [61] D. Parry, A. Craig, G. Barnes, Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age, Proceedings of the Royal Society of London. Series B. Biological Sciences 203(1152) (1978) 293-303.

    無法下載圖示 全文公開日期 2033/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE