簡易檢索 / 詳目顯示

研究生: Saitong Muneekaew
Saitong Muneekaew
論文名稱: 利用外源性光生物調節法與膠原蛋白微島嶼控制幹細胞分化
Control of Stem Cell Differentiation with Extrinsic Photobiomodulation and Collagen Microislands
指導教授: 王孟菊
Meng-Jiy Wang
陳賜原
Szu-Yuan Chen
口試委員: 李振綱
周秀慧
施志欣
劉奕成
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 膠原蛋白微島嶼外源性光生物調節法華通氏膠-間質幹細胞神經細胞分化脂肪細胞分化
外文關鍵詞: Collagen microislands, Extrinsic photobiomodulation, Wharton's jelly mesenchymal stem cell, Neurogenic differentiation, Adipogenic differentiation
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞療法主要指受損器官的修復或是將器官直接置換。然而此治療法目前的主要困境為缺少器官捐贈者以及有限的捐贈器官。幹細胞的增殖與分化能力使其在作為細胞療法的用途上受到關注。近年來,一些研究已經提出誘導細胞分化並引導幹細胞分化成特定表現型的方法。調節幹細胞分化的常規方法是使用化學誘導法,如生長因子(growth factors),激素(hormones)或市售誘導培養基(commercial induction medium)。然而,化學誘導法通常具有如低效率,費時或高成本等缺點。本研究的目的為開發製造膠原蛋白微島嶼的技術,以更好地控制細胞表現型。此外,本研究也利用光生物調節法(photobiomodulation)提高細胞分化率。
    本研究展示製備特定大小和形狀 (正方形:50×50 μm2,和長方形:120×20 μm2) 的膠原蛋白微島嶼的技術並應用於WJ-MSC幹細胞培養。結果顯示,當WJ-MSC培養於NDM (neurogenic differentiation medium)時,長方形微島嶼上的神經細胞分化率(23.30 ± 0.81 %)比在正方形微島嶼(18.00 ± 1.41 %)上還要更高。另一方面,當培養基為ADM (adipogenic differentiation medium)時,WJ-MSCs在正方形微島嶼(14.90 ± 2.26 %)上的脂肪細胞分化傾向比在長方形微島嶼(6.92 ± 3.07 %)上更高。為了提高細胞分化率,本研究也利用外源性光生物調節法(EPM, extrinsic photobiomodulation),在幹細胞培養於膠原蛋白微島嶼的同時,加入光敏劑Verteporfin並照射波長為690 nm的激光。結果顯示,在正方形膠原蛋白微島嶼和長方形膠原蛋白微島嶼上使用EPM並以一般培養基進行培養分別可以誘導高比例的脂肪細胞分化(21.5 ± 5.23 %)和神經細胞分化(38.33 ± 10.22 %)。
    總結而言,本研究展示EPM技術可在不使用物理或化學的誘導法的同時提升神經細胞或脂肪細胞的分化率。此外,本研究也發展了能製備具備幾何形狀的膠原蛋白微島嶼,並利用微島嶼誘導幹細胞分化表現型。EPM與膠原蛋白微島嶼的結合可以取代傳統的化學因子來增強細胞分化。本研究也有望在未來的實驗中發展出關於細胞選擇性和加速細胞分化為包含體細胞(somatic cells)在內的各種細胞類型的能力。


    Cellular therapy is one type of medical treatments that related closely with the restoration or the direct replacement of damaged organs. However, the lack of donors and the limitation of organs were the major problems for the treatments. Stem cells were reported as an alternative for cellular therapy because of the possibility modulability toward proliferation and differentiation. In recent year, several studies have demonstrated the possibilities to induce cell differentiation and to direct stem cells to specific differentiation phenotypes. Conventional method to modulate the stem cell differentiation focused on applying chemical inducing reagents such as growth factors, hormones or commercial induction medium. However, chemical inducing reagent methods usually possessed disadvantages including low efficiency, time consuming, or high-costs. The goals of this research are to develop techniques to prepare arrays of collagen islands with the dimension of micrometer to control the phenotype of stem cells. In addition, the photobiomodulation was also applied to further promote cell differentiation rate.
    This study demonstrated the technique to induce the differentiation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) on collagen microislands with different topological cues which are the square patterns of 50 × 50 μm2 and rectangular patterns of 120 × 20 μm2. By culturing in neurogenic differentiation medium (NDM), WJ-MSCs showed higher neurogenic differentiation on rectangular microislands (23.30 ± 0.81 %) over square microislands (18.00 ± 1.41 %). On the other hand, when the medium was adipogenic differentiation medium (ADM), WJ-MSCs tended to undergo adipogenic differentiation on the square microislands (14.90 ± 2 .26 %) when compared with that on the rectangular microislands (6.92 ± 3.07 %). In order to increase the percentage of cells differentiation, the extrinsic photobiomodulation (EPM) method, applying photosensitizer (verteporfin) and shining the laser light at the wavelength 690 nm, was applied to WJ-MSCs cultured on collagen microislands. General maintenance medium with EPM on square microislands and rectangular microislands can induce high percentage of adipogenic (21.5 ± 5.23 %) and neurogenic differentiation (38.33 ± 10.22 %), respectively.
    In conclusion, this study demonstrated that EPM could induce neurogenic and adipogenic differentiation without using chemical or physical cues. Moreover, the collagen microislands with different aspect ratios were successfully developed which can dictate cell differentiation phenotypes. Lastly, the synergistic effects of EPM and the topological cues of collagen arrays can replace the chemical factor to enhance cell differentiation. This work is also promising for future experiments to selection and acceleration of cell differentiation towards various cell types including somatic cells.

    Content of thesis 摘要 ............................................................................................................................................ I Abstract ..................................................................................................................................... II Acknowledgements ................................................................................................................. IV Content of thesis ........................................................................................................................ V List of Figures ........................................................................................................................ VII List of Tables .......................................................................................................................... XII Chapter 1 Introduction ........................................................................................................... 1 1.1 Background of research ................................................................................................... 1 1.2 Research goal .................................................................................................................. 2 Chapter 2 Literature review ................................................................................................... 4 2.1 Stem cell differentiation and applications ....................................................................... 4 2.2 Induction of stem cell differentiation .............................................................................. 6 2.2.1 Chemical factors ........................................................................................................... 6 2.2.2 Collagen ........................................................................................................................ 9 2.2.3 Cell pattern ................................................................................................................. 12 2.2.4 Light ........................................................................................................................... 15 Chapter 3 Experimental........................................................................................................ 19 3.1 Chemicals ...................................................................................................................... 19 3.1.1 Cell culture ............................................................................................................. 19 3.1.2 Fluorescence staining ............................................................................................. 19 3. 2 Equipment and instruments .......................................................................................... 20 3.3 Experimental procedure................................................................................................. 21 3.3.1 Preparation of collagen microislands ..................................................................... 21 3.3.2 Collagen immunostaining ....................................................................................... 23 3.3.3 Cell culture ............................................................................................................. 23 3.3.4 Cell morphology on collagen microislands, stained by DAPI and phalloidin ........ 24 3.3.5 Induction of differentiation of WJ-MSCs by chemical factor ................................ 24 3.3.6 Cytotoxicity assay of verteporfin and light fluence ................................................ 25 3.3.7 Promotion differentiation of WJ-MSCs by extrinsic photobiomodulation (EPM) . 26 3.3.8 Cell differentiation analysis .................................................................................... 26 3.3.9 Statistical analyses .................................................................................................. 27 Chapter 4 Results and Discussion ........................................................................................ 28 4.1 Fabrication of collagen microislands on glass substrate ............................................... 28 4.2 WJ-MSCs behavior on collagen microislands............................................................... 31 4.3 Confirmation of neurogenic and adipogenic differentiation ......................................... 35 4.4 Cell differentiation on collagen microislands ................................................................ 39 4.4.1 Neurogenic differentiation ...................................................................................... 39 4.4.2 Adipogenic differentiation ...................................................................................... 42 4.5 Effect of Verteporfin concentration and light fluence on cell viability ......................... 46 4.6 Extrinsic photobiomodulation (EPM) induced cell differentiaion ................................ 51 4.6.1 Neurogenic differentiation ...................................................................................... 51 4.6.2 Adipogenic differentiation ...................................................................................... 56 4.7 Comparison of various chemical and physical factors for neurogenic differentiation .. 60 4.8 Comparison of various chemical and physical factors for adipogegenic differentiation61 Chapter 5 Conclusion ........................................................................................................... 62 References ............................................................................................................................... 64 Appendix: Q & A .................................................................................................................... 70 Curriculum Vitae ..................................................................................................................... 76

    1. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS: Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5(1):17-26.
    2. Kranc W, Budna J, Kahan R, Chachuła A, Bryja A, Ciesiółka S, Borys S, Antosik MP, Bukowska D, Brussow KP et al: Molecular basis of growth, proliferation, and differentiation of mammalian follicular granulosa cells. Journal of Biological Regulators and Homeostatic Agents 2017, 31(1):1-8.
    3. Curran JM, Chen R, Hunt JA: The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 2006, 27(27):4783-4793.
    4. Ahrabi B, Rezaei Tavirani M, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S, Abbaszadeh HA: The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. J Lasers Med Sci 2019, 10(Suppl 1):S96-S103.
    5. Thery M, Pepin A, Dressaire E, Chen Y, Bornens M: Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil Cytoskeleton 2006, 63(6):341-355.
    6. Pan F, Zhang M, Wu G, Lai Y, Greber B, Scholer HR, Chi L: Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials 2013, 34(33):8131-8139.
    7. Li W, Zhu B, Strakova Z, Wang R: Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem Biophys Res Commun 2014, 450(4):1377-1382.
    8. Kilian KA, Bugarija B, Lahn BT, Mrksich M: Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010, 107(11):4872-4877.
    9. Karu TI, Pyatibrat LV, Afanasyeva NI: Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med 2005, 36(4):307-314.
    10. de Freitas LF, Hamblin MR: Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron 2016, 22(3).
    11. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS et al: Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011, 6(7):e22453.
    12. Jo J, Abdi Nansa S, Kim DH: Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020, 8:608569.
    13. Yang K, Park E, Lee JS, Kim IS, Hong K, Park KI, Cho SW, Yang HS: Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells. Macromol Biosci 2015, 15(10):1348-1356.
    14. Peng J, Wang Y, Zhang L, Zhao B, Zhao Z, Chen J, Guo Q, Liu S, Sui X, Xu W et al: Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011, 84(3):235-243.
    15. Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM et al: Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 2008, 1229:233-248.
    16. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T et al: Matrix Cells from Wharton’s Jelly Form Neurons and Glia. Stem Cells 2003, 21:50-60.
    17. Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R: Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biology 2014, 15(46).
    18. Long X, Olszewski M, Huang W, Kletzel M: Neural Cell Differentiation In Vitro from Adult Human Bone Marrow Mesenchymal Stem cells. STEM CELLS AND DEVELOPMENT 2005, 14:65-69.
    19. Wang TT, Tio M, Lee W, Beerheide W, Udolph G: Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA. Biochem Biophys Res Commun 2007, 357(4):1021-1027.
    20. Gudas LJ, Wagner JA: Retinoids regulate stem cell differentiation. J Cell Physiol 2011, 226(2):322-330.
    21. Kumar BM, Maeng GH, Lee YM, Kim TH, Lee JH, Jeon BG, Ock SA, Yoo JG, Rho GJ: Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res Vet Sci 2012, 93(2):749-757.
    22. Benoit DS, Schwartz MP, Durney AR, Anseth KS: Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008, 7(10):816-823.
    23. Curran JM, Chen R, Hunt JA: Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 2005, 26(34):7057-7067.
    24. Poole K, Khairy K, Friedrichs J, Franz C, Cisneros DA, Howard J, Mueller D: Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J Mol Biol 2005, 349(2):380-386.
    25. Roach P, Eglin D, Rohde K, Perry CC: Modern biomaterials: a review - bulk properties and implications of surface modifications. J Mater Sci Mater Med 2007, 18(7):1263-1277.
    26. Bellis SL: Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 2011, 32(18):4205-4210.
    27. Ning Wang JDT, Donald E. Ingber: Mechanotransduction at a distance: mechanically with the nucleus. Nat Rev Mol Cell Bio 2009, 10(1):75-82.
    28. Keselowsky BG, Collard DM, Garcı´a AsJ: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. PNAS 2005, 102(17):5953-5957.
    29. Brock A, Chang E, Ho C-C, LeDuc P, Jiang X, Whitesides GM, Ingber DE: Geometric Determinants of Directional Cell Motility Revealed Using Microcontact Printing. Langmuir 2003, 19:1611-1617.
    30. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO: The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007, 6(12):997-1003.
    31. Martinez E, Engel E, Planell JA, Samitier J: Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat 2009, 191(1):126-135.
    32. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim KS: Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 2010, 31(15):4360-4366.
    33. Evelyn KF Yim SWP, Kam W Leong: Synthetic Nanostructures Inducing Differentiation of Human Mesenchymal Stem cells into Neuronal Lineage. Exp Cell Res 2007, 313(9):1820-1829.
    34. Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, Ai J, Nourani MR, Joghataei MT: Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Mol Neurobiol 2016, 53(4):2397-2408.
    35. Yim EK, Pang SW, Leong KW: Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007, 313(9):1820-1829.
    36. Li H, Wen F, Chen H, Pal M, Lai Y, Zhao AZ, Tan LP: Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage. ACS Appl Mater Interfaces 2016, 8(1):563-573.
    37. Peng R, Yao X, Ding J: Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011, 32(32):8048-8057.
    38. Bhadriraju K, Yang M, Ruiz SA, Pirone D, Tan J, Chen1 CS: Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension. Experimental Cell Research 2007, 313(16).
    39. Song W, Wang X, Lu H, Kawazoe N, Chen G: Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter 2012, 8(32).
    40. Downing TL, Soto J, Morez C, Houssin T, Fritz A, Yuan F, Chu J, Patel S, Schaffer DV, Li S: Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 2013, 12(12):1154-1162.
    41. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR: Role of low-level laser therapy in neurorehabilitation. PM R 2010, 2(12 Suppl 2):S292-305.
    42. Karu TI: Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochemistry and Photobiology 2008, 84.
    43. Ates GBlkı, Ak Ae, Garipcan B, lsoy MG: Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology 2020, 72:247-258.
    44. Ferreira MPP, Ferrari RAM, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DAB, Fernandes aKPS: Effect of Low-Energy Gallium-Aluminum-Arsenideand Aluminium Gallium Indium Phosphide Laser Irradiation on the Viability of C2C12 Myoblasts in a Muscle Injury Model. Photomedicine and Laser Surgery 2009, 27:901-906.
    45. Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q, Li Y: Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 2019, 34(4):667-675.
    46. Henderson BW, Dougherty TJ: How does Photodynamic Therapy Work? Photochemistry and Photobiology 1992, 55(1):145-157.
    47. Ochsner M: Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology 1997, 39:1-18.
    48. Schmidt-Erfurth U, Hasan T: Mechanisms of Action of Photodynamic Therapy with Verteporfin for the Treatment of Age-Related Macular Degeneration. SURVEY OF OPHTHALMOLOGY 2000, 45:195-214.
    49. Castilho-Fernandes A, Lopes TG, Ferreira FU, Rezende N, Silva VF, Primo FL, Fontes AM, Ribeiro-Silva A, Tedesco AC: Adipogenic differentiation of murine bone marrow mesenchymal stem cells induced by visible light via photo- induced biomodulation. Photodiagnosis Photodyn Ther 2019, 25:119-127.
    50. Belzacq A-S, Jacotot E, Vieira HLA, Mistro D, Granville DJ, Xie Z, Reed JC, Kroemer G, Brenner C: Apoptosis Induction by the Photosensitizer Verteporfin: Identification of Mitochondrial Adenine Nucleotide Translocator as a Critical Target. CANCER RESEARCH 2001, 61:1260-1264.
    51. Bigarella CL, Liang R, Ghaffari S: Stem cells and the impact of ROS signaling. Development 2014, 141(22):4206-4218.
    52. Lu Z, Liu S, Le Y, Qin Z, He M, Xu F, Zhu Y, Zhao J, Mao C, Zheng L: An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 2019, 218:119190.
    53. Kushibiki T, Tu Y, Abu-Yousif AO, Hasan T: Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation. Sci Rep 2015, 5:13114.
    54. Bhavsar MB, Cato G, Hauschild A, Leppik L, Costa Oliveira KM, Eischen-Loges MJ, Barker JH: Membrane potential (Vmem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ 2019, 7:e6341.
    55. Chen L, He DM, Zhang Y: The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro. Cell Mol Biol Lett 2009, 14(3):528-536.
    56. Song W, Lu H, Kawazoe N, Chen G: Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir 2011, 27(10):6155-6162.
    57. Wang X, Nakamoto T, Dulinska-Molak I, Kawazoe N, Chen G: Regulating the stemness of mesenchymal stem cells by tuning micropattern features. J Mater Chem B 2016, 4(1):37-45.
    58. Dahl KN, Ribeiro AJ, Lammerding J: Nuclear shape, mechanics, and mechanotransduction. Circ Res 2008, 102(11):1307-1318.
    59. Ren D, Xia Y, Wang J, You Z: Micropatterning of single cell arrays using the PEG-Silane and Biotin–(Strept)Avidin System with photolithography and chemical vapor deposition. Sensors and Actuators B: Chemical 2013, 188:340-346.
    60. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J: Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke 2002, 33(5):1362-1368.
    61. Tanvig M, Blaabjerg M, Andersen RK, Villa A, Rosager AM, Poulsen FR, Martinez-Serrano A, Zimmer J, Meyer M: A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream. Brain Res 2009, 1295:1-12.
    62. Aldridge A, Kouroupis D, Churchman S, English A, Ingham E, Jones E: Assay validation for the assessment of adipogenesis of multipotential stromal cells--a direct comparison of four different methods. Cytotherapy 2013, 15(1):89-101.
    63. Weyer A, Schilling K: Developmental and Cell Type-Specific Expression of the Neuronal Marker NeuN in the Murine Cerebellum. Journal of Neuroscience Research 2003, 73:400-409.

    無法下載圖示 全文公開日期 2031/02/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE