簡易檢索 / 詳目顯示

研究生: 黃幸馨
Sutatta Akrasirakul
論文名稱: 利用不同來源血清處理細胞外基質 以降低其免疫排斥問題
PREPARATION OF LOW IMMUNOGENICITY DECELLULARIZED EXTRACELLULAR MATRIX HYDROGELS BY USING VARIOUS SPECIES OF SERUMS IN THE DECELLULARIZATION PROCESS
指導教授: 高震宇
Chen-Yu Chen
口試委員: 蔡協政
Hsieh-Chih Tsai
何明樺
Ming-Hua Ho
羅俊民
Chun-Min Lo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 61
中文關鍵詞: 細胞外基質去細胞處理豬膀胱血清水膠
外文關鍵詞: Extracellular matrix, Decellularization, Porcine bladder, Serum, Hydrogels
相關次數: 點閱:433下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 器官衰竭仍然是導致全球死亡的一個問題。然而,器官捐贈的急
    劇減少加劇了全球可移植器官的短缺。因此,脫細胞支架的概念已被
    選為組織工程和器官置換的臨床策略新概念。將天然組織的去細胞化
    製成生物支架或生醫材料是一種很有前途的技術,可以在組織工程和
    再生醫學中提供大量醫材來源。另一方面,它仍然存在各種限制,例
    如未清除的殘留物會誘導免疫反應,並可能在移植後導致嚴重的炎症
    反應。本研究旨為利用豬膀胱製備異種脫細胞之細胞外基質 (dECM) 支
    架,以探索血清對脫細胞過程的影響。
    本實驗將豬膀胱分為四組進行脫細胞程序,在原本使用去污劑、
    十二烷基硫酸鈉 (SDS) 的過程中,分別添加胎牛血清、豬血清和馬血清
    等三種不同類型的血清,並在一個完整的脫細胞過程後,確認脫細胞
    功效之評估。藉由在dECM 的水凝膠中進行細胞培養,以評估dECM
    的水凝膠之生物活性和炎症反應。由實驗結果可得知,只有用SDS 單
    一處理的組別,有大量DNA 殘留,並與未脫細胞組織沒有顯著差異;
    然而,在經血清處理後能降低DNA 殘留和 α-gal 表位含量減少。其中
    在添加胎牛血清組別所製備的dECM 之 DNA 殘留量為 15.71 ng/mg,而
    豬血清和馬血清製備的dECM之DNA殘留量分別為 44.9 和 46.82 ng/mg,
    這三個組別的dECM中DNA殘留量皆低於產生免疫反應的50 ng/mg建
    議值。此外與天然組織相比,這三組dECM 在免疫組織化學中顯示了
    α-gal 被有效去除。此外,當與 RAW 264.7 和 THP-1 細胞與未處理的
    水膠一起培養時,會刺激水凝膠釋放 TNF-α(一種促炎細胞因子),
    II
    然而在脫細胞中加入血清組別的水膠卻顯示能降低 TNF-α 的分泌,顯
    示其較不會引起發炎反應。綜合上述,本研究結果顯示:在脫細胞步
    驟中,加入10-20%之血清可以有效減少豬膀胱dECM 上的DNA 和 α-
    gal。利用此脫細胞技術所製備的豬膀dECM 是一種有高度生物相容性
    的醫材,並且有潛力成為應用在細胞培養和移植之免疫調節材料。


    Organ failure remains a concern leading to mortality across the globe. However, the
    steep reduction in organ donation aggravates the worldwide shortage of transplantable
    organs. Hence, the concept of the decellularized scaffold has been chosen as a novel for
    tissue engineering and clinical strategy for organ replacement. On one hand, the
    decellularization of native tissue is well known as a promising technique that can offer
    numerous applications in tissue engineering and regenerative medicine. On the other hand,
    there are still various limitations like remnants of materials that can induce an immune
    response and may lead to a severe inflammatory response upon transplantation. This study
    aims to fabricate a xenogeneic decellularized extracellular matrix (ECM) scaffold from the
    porcine bladder to explore the effect of serums on the decellularization process.
    The decellularization procedure was developed and porcine bladders were divided
    into four groups and deflated by detergent, Sodium Dodecyl Sulfate (SDS) and its
    modification, using three different types of serum, Fetal calf serum, Porcine serum, and
    Horse serum under temperature control. After a complete process, the evaluation of
    decellularization efficacy was confirmed. Consequently, dECM-based hydrogel
    bioscaffold and cell seeding were fabricated in sterilized conditions to assess the bioactivity
    and inflammatory response. All samples resulted in a reduction of recombinant DNA and
    alpha-gal epitope content on each sera treatment. Only the group of single treatment with
    SDS showed a high content of DNA with no significantly different from undecellularized
    tissue. Nevertheless, the result on each sera treatment indicated a significant decrease of
    DNA, with 15.71 ng per mg dry weight ECM left after incubating in fetal calf serum, 44.9,
    IV
    and 46.82 ng/mg on porcine serum, and horse serum, respectively. Immunohistochemistry
    also showed the removal of alpha-gal epitopes compared to the native tissues. In addition,
    quantification of released TNF-α (a pro-inflammatory cytokine) stimulated by hydrogel
    when cultured with RAW 264.7 and THP-1 cell line revealed no immunological response
    (TNF-alpha secretion inhibits). Inclusively, our findings imply that serum can reduce both
    nuclease and alpha-gal epitopes on the porcine bladder so that the acellular porcine bladder
    can be considered a biocompatible material, and is suitable for cell culture and
    transplantation applications for immunomodulatory materials.

    Abstract (Chinese) ……………………………………………………………...................I Abstract………………………………………………………………………..................III Acknowledgment……………………………………………………………..................V Table of Contents………………………………………..……………………….…........VI List of Figures …………….…………………………..................…………………….VIII List of Tables ……………………………………………....................................……...XII Chapter 1: Introduction……………………………………………....................................1 Chapter 2: Literature Reviews 2.1 History of Organ Engineering……………………………..........………….....4 2.2 Extracellular Matrix (ECM) ………………………………………….............6 2.3 Strategies for building organs by Decellularization process............................10 2.4 Unwanted Residual materials……………………........……...........…............13 2.5 Transplantation of Xenogeneic organs…………........……..................…...…14 2.6 The use of porcine organs……………….......……...........…….........……......15 2.7 Tissue reaction to biomaterials……...............……..........................................16 2.8 Structure and function of Nuclease through DNA...........................................17 2.9 Serum and decellularization applications.........................................................18 Chapter 3: Methodology Materials and Equipment………………………………........................…………19 Chapter 4: Results and Discussion..................…….…........33 Chapter 5: Conclusion……........……........…….......……........…….................................52 References……........……........……........…….........……........……...........……..............54

    1. Hussey, G.S., J.L. Dziki, and S.F. Badylak, Extracellular matrix-based materials
    for regenerative medicine. Nature Reviews Materials, 2018. 3(7): p. 159-173.
    2. Lu, Y., et al., A standardized quantitative method for detecting remnant alpha-Gal
    antigen in animal tissues or animal tissue-derived biomaterials and its application.
    Scientific Reports, 2018. 8(1): p. 15424.
    3. McPherson, T.B., et al., Galalpha(1,3)Gal epitope in porcine small intestinal
    submucosa. Tissue Eng, 2000. 6(3): p. 233-9.
    4. Srokowski, E.M. and K.A. Woodhouse, 2.20 Decellularized Scaffolds, in
    Comprehensive Biomaterials II, P. Ducheyne, Editor. 2017, Elsevier: Oxford. p.
    452-470.
    5. Taylor, D.A., et al., Chapter 15 - Decellularization of whole hearts for cardiac
    regeneration, in Emerging Technologies for Heart Diseases, U. Nussinovitch,
    Editor. 2020, Academic Press. p. 291-310.
    6. Gilpin, A. and Y. Yang, Decellularization Strategies for Regenerative Medicine:
    From Processing Techniques to Applications. BioMed research international, 2017.
    2017: p. 9831534-9831534.
    7. Aamodt, J.M. and D.W. Grainger, Extracellular matrix-based biomaterial scaffolds
    and the host response. Biomaterials, 2016. 86: p. 68-82.
    8. Macher, B.A. and U. Galili, The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal)
    epitope: a carbohydrate of unique evolution and clinical relevance. Biochimica et
    biophysica acta, 2008. 1780(2): p. 75-88.
    55
    9. Sandrin, M.S. and I.F. McKenzie, Gal alpha (1,3)Gal, the major xenoantigen(s)
    recognised in pigs by human natural antibodies. Immunol Rev, 1994. 141: p. 169-
    90.
    10. Gui, L., et al., Novel utilization of serum in tissue decellularization. Tissue Eng Part
    C Methods, 2010. 16(2): p. 173-84.
    11. Shao, Y., et al., A novel method in preparation of acellularporcine corneal stroma
    tissue for lamellar keratoplasty. Am J Transl Res, 2015. 7(12): p. 2612-29.
    12. Oh, J.Y., et al., Acute cell-mediated rejection in orthotopic pig-to-mouse corneal
    xenotransplantation. Xenotransplantation, 2009. 16(2): p. 74-82.
    13. Langer, R. and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p. 920-
    926.
    14. de Isla, N., et al., Introduction to tissue engineering and application for cartilage
    engineering. Biomed Mater Eng, 2010. 20(3): p. 127-33.
    15. Dolcimascolo, A., et al., Innovative Biomaterials for Tissue Engineering. 2019.
    16. Mooney, D., et al., Switching from differentiation to growth in hepatocytes: control
    by extracellular matrix. J Cell Physiol, 1992. 151(3): p. 497-505.
    17. Badylak, S., et al., Naturally occurring extracellular matrix as a scaffold for
    musculoskeletal repair. Clin Orthop Relat Res, 1999(367 Suppl): p. S333-43.
    18. Tighe, B.J. and A. Mann, 13 - Sulphonated biomaterials as glycosaminoglycan
    mimics in wound healing, in Advanced Wound Repair Therapies, D. Farrar, Editor.
    2011, Woodhead Publishing. p. 321-357.
    19. Labat-Robert, J. and L. Robert, Aging of the extracellular matrix and its pathology.
    Exp Gerontol, 1988. 23(1): p. 5-18.
    56
    20. Singh, P., C. Carraher, and J.E. Schwarzbauer, Assembly of fibronectin
    extracellular matrix. Annu Rev Cell Dev Biol, 2010. 26: p. 397-419.
    21. Tzu, J. and M.P. Marinkovich, Bridging structure with function: structural,
    regulatory, and developmental role of laminins. Int J Biochem Cell Biol, 2008.
    40(2): p. 199-214.
    22. Chiquet-Ehrismann, R. and R.P. Tucker, Connective tissues: signalling by
    tenascins. Int J Biochem Cell Biol, 2004. 36(6): p. 1085-9.
    23. Sharma, P. and N. Maffulli, Tendon injury and tendinopathy: healing and repair. J
    Bone Joint Surg Am, 2005. 87(1): p. 187-202.
    24. Tanzer, M.L., Current concepts of extracellular matrix. J Orthop Sci, 2006. 11(3):
    p. 326-31.
    25. Kim, S.H., J. Turnbull, and S. Guimond, Extracellular matrix and cell signalling:
    the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J
    Endocrinol, 2011. 209(2): p. 139-51.
    26. Bosman, F.T. and I. Stamenkovic, Functional structure and composition of the
    extracellular matrix. J Pathol, 2003. 200(4): p. 423-8.
    27. Hackett, T.L. and E.T. Osei, Modeling Extracellular Matrix-Cell Interactions in
    Lung Repair and Chronic Disease. Cells, 2021. 10(8).
    28. Zhang, X., et al., Decellularized extracellular matrix scaffolds: Recent trends and
    emerging strategies in tissue engineering. Bioactive Materials, 2022. 10: p. 15-31.
    29. Massaro, M.S., et al., Decellularized xenogeneic scaffolds in transplantation and
    tissue engineering: Immunogenicity versus positive cell stimulation. Materials
    Science and Engineering: C, 2021. 127: p. 112203.
    57
    30. Mendibil, U., et al., Tissue-Specific Decellularization Methods: Rationale and
    Strategies to Achieve Regenerative Compounds. Int J Mol Sci, 2020. 21(15).
    31. Chen, G. and N. Kawazoe, Decellularization Techniques for Preparation of
    Decellularized Extracellular Matrices in Tissue Engineering Applications, in
    Encyclopedia of Analytical Chemistry. p. 1-15.
    32. Derwin, K.A., et al., Commercial extracellular matrix scaffolds for rotator cuff
    tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint
    Surg Am, 2006. 88(12): p. 2665-72.
    33. Macher, B.A. and U. Galili, The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal)
    epitope: a carbohydrate of unique evolution and clinical relevance. Biochim
    Biophys Acta, 2008. 1780(2): p. 75-88.
    34. Galili, U., et al., Man, apes, and Old World monkeys differ from other mammals in
    the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem, 1988.
    263(33): p. 17755-62.
    35. Galili, U., et al., Evolutionary relationship between the natural anti-Gal antibody
    and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci U S A, 1987.
    84(5): p. 1369-73.
    36. Galili, U., et al., A unique natural human IgG antibody with anti-alpha-galactosyl
    specificity. Journal of Experimental Medicine, 1984. 160(5): p. 1519-1531.
    37. Anderson, M., Xenotransplantation: a bioethical evaluation. J Med Ethics, 2006.
    32(4): p. 205-8.
    38. Velnar, T., et al., Biomaterials and host versus graft response: a short review. Bosn
    J Basic Med Sci, 2016. 16(2): p. 82-90.
    58
    39. Anderson, J.M., A. Rodriguez, and D.T. Chang, Foreign body reaction to
    biomaterials. Seminars in Immunology, 2008. 20(2): p. 86-100.
    40. Niu, D., et al., Porcine genome engineering for xenotransplantation. Advanced
    Drug Delivery Reviews, 2021. 168: p. 229-245.
    41. Cooper, D.K.C., B. Gollackner, and D.H. Sachs, Will the Pig Solve the
    Transplantation Backlog? Annual Review of Medicine, 2002. 53(1): p. 133-147.
    42. Gordon, S. and P.R. Taylor, Monocyte and macrophage heterogeneity. Nature
    Reviews Immunology, 2005. 5(12): p. 953-964.
    43. Sridharan, R., et al., Biomaterial based modulation of macrophage polarization: a
    review and suggested design principles. Materials Today, 2015. 18(6): p. 313-325.
    44. Nishino, T. and K. Morikawa, Structure and function of nucleases in DNA repair:
    Shape, grip and blade of the DNA scissors. Oncogene, 2003. 21: p. 9022-32.
    45. Nishino, T. and K. Morikawa, Structure and function of nucleases in DNA repair:
    shape, grip and blade of the DNA scissors. Oncogene, 2002. 21(58): p. 9022-9032.
    46. Yang, W., Nucleases: diversity of structure, function and mechanism. Q Rev
    Biophys, 2011. 44(1): p. 1-93.
    47. Napirei, M., et al., Murine serum nucleases – contrasting effects of plasmin and
    heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3). The FEBS
    Journal, 2009. 276(4): p. 1059-1073.
    48. Kao, C.-Y., H.-Q.-D. Nguyen, and Y.-C. Weng, Characterization of Porcine
    Urinary Bladder Matrix Hydrogels from Sodium Dodecyl Sulfate Decellularization
    Method. Polymers, 2020. 12(12): p. 3007.
    59
    49. Simsa, R., et al., Effect of fluid dynamics on decellularization efficacy and
    mechanical properties of blood vessels. PLOS ONE, 2019. 14(8): p. e0220743.
    50. Kao, C.-Y., et al., Evaluating the Effect of Tissue Selection on the Characteristics
    of Extracellular Matrix Hydrogels from Decellularized Porcine Bladders. Applied
    Sciences, 2021. 11(13).
    51. Bartosh, T.J. and J.H. Ylostalo, Macrophage Inflammatory Assay. Bio Protoc, 2014.
    4(14).
    52. Genin, M., et al., M1 and M2 macrophages derived from THP-1 cells differentially
    modulate the response of cancer cells to etoposide. BMC Cancer, 2015. 15(1): p.
    577.
    53. Chanput, W., et al., Transcription profiles of LPS-stimulated THP-1 monocytes and
    macrophages: a tool to study inflammation modulating effects of food-derived
    compounds. Food Funct, 2010. 1(3): p. 254-61.
    54. Widdrington, J.D., et al., Exposure of Monocytic Cells to Lipopolysaccharide
    Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy,
    and Antioxidant Defenses. Frontiers in Immunology, 2018. 9.
    55. Kao, C.Y., H.Q. Nguyen, and Y.C. Weng, Characterization of Porcine Urinary
    Bladder Matrix Hydrogels from Sodium Dodecyl Sulfate Decellularization Method.
    Polymers (Basel), 2020. 12(12).
    56. Ventura, R.D., et al., Enhanced decellularization technique of porcine dermal ECM
    for tissue engineering applications. Materials Science and Engineering: C, 2019.
    104: p. 109841.
    60
    57. Tóthová, C., X. Mihajlovičová, and N. Oskar, The Use of Serum Proteins in the
    Laboratory Diagnosis of Health Disorders in Ruminants. 2018.
    58. Felgueiras, H.P., et al., 1 - Fundamentals of protein and cell interactions in
    biomaterials, in Peptides and Proteins as Biomaterials for Tissue Regeneration and
    Repair, M.A. Barbosa and M.C.L. Martins, Editors. 2018, Woodhead Publishing.
    p. 1-27.
    59. Kyriakides, T.R., Chapter 5 - Molecular Events at Tissue–Biomaterial Interface, in
    Host Response to Biomaterials, S.F. Badylak, Editor. 2015, Academic Press:
    Oxford. p. 81-116.
    60. Welch, J., et al., Evaluation of the toxicity of sodium dodecyl sulphate (SDS) in the
    MucilAir™ human airway model in vitro. Regul Toxicol Pharmacol, 2021. 125: p.
    105022.
    61. Ishino, N. and T. Fujisato, Decellularization of porcine carotid by the recipient's
    serum and evaluation of its biocompatibility using a rat autograft model. J Artif
    Organs, 2015. 18(2): p. 136-42.
    62. Nguyen, H.Q., et al., Investigating the Immunomodulatory Potential of Dental Pulp
    Stem Cell Cultured on Decellularized Bladder Hydrogel towards Macrophage
    Response In Vitro. Gels, 2022. 8(3).
    63. Galateanu, B., et al., Layer-shaped alginate hydrogels enhance the biological
    performance of human adipose-derived stem cells. BMC Biotechnology, 2012. 12:
    p. 35.
    64. Yuksel Egrilmez, M., et al., The cellular responses of human macrophages seeded
    on 3D printed thermoplastic polyurethane scaffold. 2022. 3: p. 40-45.
    61
    65. Chakraborty, J., et al., Modulation of macrophage phenotype, maturation and graft
    integration through chondroitin sulfate conjugation to decellularized cornea. ACS
    Biomaterials Science & Engineering, 2018. 5.

    無法下載圖示 全文公開日期 2027/08/16 (校內網路)
    全文公開日期 2027/08/16 (校外網路)
    全文公開日期 2027/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE