簡易檢索 / 詳目顯示

研究生: 張仁傑
Jen-chieh Chang
論文名稱: 金屬板材U型彎曲成形翹曲現象改善之研究
A Study of Improving Warped Behavior in Sheet Metal U-Bending Process
指導教授: 黃佑民
You-min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
Tsung-chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 116
中文關鍵詞: 有限元素法U型彎曲製程翹曲現象金屬成形
外文關鍵詞: finite element method, U-bending process, warping phenomenon, metal forming
相關次數: 點閱:213下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文目的在於運用彈塑性增量理論結合有限元素方法,模擬分析金屬板材之U型彎曲加工製程中所產生之翹曲現象。本文遵循Prandtl-Reuss塑流法則與von Mises之降伏條件,結合有限變形理論及updated Lagrangian formulation (ULF)之觀念建立一增量型彈塑性大變形三維有限元素分析程式。並利用以四邊形四節點之退化殼元素(degenerated shell element)所推導之形狀函數耦合入剛性矩陣,組成三維有限元素之分析模式,並且使用廣義 法則處理金屬板材在成形時,包含元素之降伏判斷、最大容許應變增量、最大容許旋轉增量、料片與模具間節點之接觸與分離判斷等問題。
藉由數值模擬,可以獲得彎曲製程之全部變形履歷、沖頭負荷與位移關係、料片厚度分佈、應力與應變分佈等,並設計一組U型彎曲成形模具進行實驗,以驗證程式之可信度。本文模擬在U型彎曲成形過程翹曲現象的產生並研究如何從改變不同模具及製程參數所獲得之改善方式。此外,本文亦提供一項最佳的沖頭圓弧半徑及模具圓弧半徑去尋求翹曲改善,並進行實驗驗證,經由實驗數據與模擬分析之數據比較顯示其結果相當符合,此舉更加證明以本研究所發展之有限元素分析程式模擬U型彎曲加工製程之可行性,且其分析之結果亦可提供製程分析者或模具設計者之參考。


The aim of this thesis is to apply an elasto-plastic incremental finite element computer code to simulate the warping behavior of the U-bending process of a sheet metal. A methodology for formulating an elasto-plastic three-dimensional finite element model to simulate sheet metal forming process is developed using Prandtl-Reuss flow rule and von Mises yield criterion respectively in association with an updated Lagrangian formulation. The shape function derived from a four-node quadrilateral degenerated shell element was combined into the stiffness matrix to constitute the finite element model. An extended algorithm was proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material.
Simulation results include the whole deformation history, the relationship between punch load and punch stroke, the distribution of thickness, stress and strain during the bending process were obtained. A set of U-shaped tools was designed for experiments to verify the reliability of the program. The thesis simulated the production of warping phenomenon in the U-bending process and investigated how to obtain improvement from the change of process parameters. Furthermore, the thesis provided suggestion of a better punch radius and die radius to acquire the improvement of warpage then carried out the experiment to prove it. The experimental results of U-bending process were compared with the simulation results. Both results after compensation were accurate and can be referred to process analyzers or tool designers.

摘要 I ABSTRACT I 誌謝 II 目錄 IV 符號索引 VII 圖表索引 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 8 1.4 論文架構 9 第二章 基本理論 11 2.1 基本假設 11 2.2 有限變形之應變與應變率 11 2.3 有限變形之應力與應力率 13 2.4 有限變形之update Lagrangian formulation 15 2.5 材料之彈塑性構成關係式 19 第三章 金屬板材有限元素分析 23 3.1 簡介 23 3.2 虛功原理的離散化 26 3.3 退化殼元素(Degenerated Shell Element) 27 3.4 不同積分法則推導退化殼元素之剛性矩陣 29 3.5 摩擦處理 31 3.6 廣義 法之增量步驟的計算 34 3.7 三維曲度修正方程式 38 3.8 除荷之設定 38 3.9 數值分析之流程 39 第四章 實驗與數值分析 44 4.1 實驗設備與材料參數 44 4.2 實驗方法與步驟 46 4.3 數值模擬分析 48 4.4 模擬與實驗結果比較 51 4.4.1 沖頭負荷與位移關係 51 4.4.2 變形歷程 52 4.4.3 反作用力分佈 53 4.4.4 應力分佈 53 4.4.5 厚度分佈 54 4.4.6 翹曲現象之形成 55 4.4.7 翹曲現象之量測 57 4.5 本章之結語 58 第五章 結論 107 5.1 結論 107 5.2 未來之展望 109 參考文獻 111 作者簡介 116

1. Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic Stress Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by Finite Element Method,” International Journal of Mechanical Sciences, Vol. 10, pp.343-354 (1968).
2. C. Zienkiewicz, S. Valliappan and I. P. King, “Elasto-Plastic Solution of Engineering Problems, Initial-Stress, Finite Element Approach,” International Journal of Numerical Methods for Engineering, Vol. 1, pp.75-100 (1969).
3. C. H. Lee and S. Kobayashi, “Elastoplastic Analysis of Plane Strain and Axisymmetric Flat Punch Indentation by the Finite Element Method,” International Journal of Mechanical Sciences, Vol. 12, pp.349-370 (1970).
4. K. Iwata, K. Osakada and S. Fujino, “Analysis of Hydrostatic Extrusion by the Finite Element Method,” Transactions of the ASME, Journal of Engineering for Industry, Vol. 94, pp.697-703 (1972).
5. E. I. Odell, “A Study of Wall Ironing by The Finite Element Technique,” Transactions of the ASME, Journal of Engineering for Industry, Vol. 100, pp.31-36 (1978).
6. H. D. Hibbit, P. V. Marcal and J. R. Rice, “A Finite Element Formulation for Problem of Large Strain and Large Displacement,” International Journal of Solids and Structures, Vol. 6, pp.1069-1086 (1970).
7. C. H. Lee and S. Kobayashi, “New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method,” Transactions of the ASME, Journal of Engineering for Industry, Vol. 95, pp.865-873 (1973).
8. R. M. McMeeking and J. R. Rice, “Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation,” International Journal of Solids and Structures, Vol. 11, pp.601-616 (1975).
9. E. D. Pugh, E. Hinton and O. C. Zienkiewicz, “A Study of Quadrilateral Plate Bending Element with Reduced Integration,” International Journal for Numerical Methods in Engineering, Vol. 12, pp.1059-1079 (1978).
10. T. J. R. Hughes, “Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media,” International Journal for Numerical Methods in Engineering, Vol. 15, pp.1413-1418 (1980).
11. Y. M. Huang, Y. H. Lu and A. Makinouchi, “Elasto-Plastic Finite-Element Analysis of V-shape Sheet Bending,” Journal of Materials Processing Technology, Vol. 35, pp.129-150 (1992).
12. J. C. Nagtegaal and N. Rebelo, “On the Development of A General Purpose Finite Element Program for Analysis of Forming Process,” International Journal for Numerical Methods in Engineering, Vol. 25, pp.113-131 (1988).
13. A. Makinouchi and S. D. Liu, “Finite Element Analysis of Contact Problems at Finite Elasto-Plastic Deformation,” Proceedings of NUMIFORM’89, pp.26-30 (1989).
14. A. Makinouchi, Y. Shirataki, S. D. Liu and Y. Nagai, “Generalization of Tool-Work Contact Conditions for Elasto-Plastic Analysis of Forming Process,” Advanced Technology of Plasticity, Vol. 3, pp.1161-1166 (1990).
15. Y. M. Huang, H. Takizawa, A. Makinouchi and T. Nakagawa, “Elastic-Plastic Analysis of V-Bending Process,” Spring Proceeding of Plastic Working, Cho-Fu, Tokyo, pp.275-278 (1989).
16. Y. Yamada and T. Hirakawa, “Large Deformation and Instability Analysis of Metal Forming Process,” Applications of Numerical Methods to Forming Processes, ASME, AMD-28, pp.27-38 (1978).
17. J. H. Cheng and N. Kikuchi, “An Analysis of Metal Forming Process Using Large Deformation Elastic-Plastic Formulations,” Computer Methods in Applied Mechanics and Engineering, Vol. 49, pp.71-108 (1985)
18. M. J. Saran and R. H. Wagoner, “A Consistent Implicit Formulation for Nonlinear Finite Element Modeling with Contact Problems in Elasticity,” Transactions of the ASME, Journal of Applied Mechanics, Vol. 58, pp.499-506 (1991)
19. B. S. Levy, “Empirically Derived Equations for Predicting Springback in Bending,” Journal of Applied Metalworking, Vol. 3, pp.135-141 (1984)
20. Y. Hayashi and M. Takagi, “Control of Side Wall Curl in Draw-Bending of High Strength Steel Sheets,” Advanced Technology of Plasticity, Vol. 1, pp.735-740 (1984).
21. A. Makinouchi, “Finite Element Modeling of Draw-Bending Process of Sheet Metal,” Proceeding of the NUMIFORM’86 Conference, Gothenburg, Vol. 25-29, August, pp.327-332 (1986).
22. J. K. Kim and P. F. Thomson, “Springback and Side-Wall Curl of Galvanized and Galvalume Steel Sheet,” Journal of Mechanical Working Technology, Vol. 19, pp.223-238 (1989).
23. Y. M. Huang and D. K. Leu, “An Elasto-Plastic Finite Analysis of Sheet Metal U-Bending Process,” Journal of Material Processing Technology, Vol. 48, pp.151-157 (1995).
24. T. C. Hsu and I. R. Shien, “Finite Element Modeling of Sheet Forming Process with Bending Effects,” Journal of Material Processing Technology, Vol. 63, pp.517-537 (1997).
25. Y. M. Huang and D. K. Leu, “Effects of Process Variables on V-Die Bending Process of Steel Sheet,” Journal of Material Processing Technology, Vol. 40, No. 7, pp.631-650 (1998).
26. S. W. Lee and D. Y Yang, “An Assessment of Numerical Parameters Influencing Springback in Explicit Finite Element Analysis of Sheet Metal Forming Process,” Journal of Material Processing Technology, Vol. 80-81, pp.60-67 (1998).
27. G. Liu,Z. Lin, W. Xu and Y. Bao, “Variable Blankholder Force in U-Shaped Part Forming for Elimination Springback Error,” Journal of Material Processing Technology, Vol. 120, pp.259-264 (2002).
28. J. R. Cho, S. J. Moon, Y. H. Moon and S. S. Kang, “Finite Element Investigation on Spring-Back Characteristics in Sheet Metal U-Bending Process,” Journal of Material Processing Technology, Vol. 141, pp.109-116 (2003).
29. Y. M. Huang and T. C. Chen, “Influence of Blank Profile on the V-Die Bending Camber Process of Sheet Metal,” International Journal of Advanced Manufacturing Technology, Vol. 25, pp.668-677 (2005).
30. L. C. Sousa, C. F. Castro and C. A. C. Antonio, “Optimal Design of V and U Bending Processes Using Genetic Algorithms,” Journal of Material Processing Technology, Vol. 172, pp.35-41 (2006).
31. 吳承志,“金屬板材U型彎曲成形製程翹曲現象分析”,國立台灣科技大學 機械工程研究所 碩士論文,台北,(2006)。

QR CODE