簡易檢索 / 詳目顯示

研究生: Nurul Aulia Dewi
Nurul Aulia Dewi
論文名稱: 利用有限元素法和RSM優化PLLA和PDLLA冠狀動脈支架的設計參數
Optimization of Design Parameters of PLLA and PDLLA Stents Using FEM and RSM
指導教授: 楊朝龍
Chao-Lung Yang
口試委員: Shi-Woei Lin
Shi-Woei Lin
Wei-Chen Lee
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 85
中文關鍵詞: 支架PLLA力學行為von mises反沖縮短有限元法響應面法
外文關鍵詞: stent, PLLA, mechanical behavior, von mises, recoil, foreshortening, finite element method, response surface method
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 支架是一種用於治療冠心病患者的微小絲網管。支架性能受其支柱和連桿設計的影響。用於構建支架的材料也會影響其關於支架受壓力測試而膨脹的能力。本文針對球囊擴張支架在響應各種充氣壓力時的數值結果進行優化分析。 3D支架模型的尺寸為長20毫米,外徑1.6毫米。透過使用Abaqus 6.13軟件的有限元法(FEM)對各種充氣壓力進行測試,以獲得機械性能,如von mises,徑向反沖,縱向反沖,縮短和膨脹直徑。本論文使用各種充氣壓力對具有50μm,75μm和100μm的各種支架厚度的支架進行模擬。然後利用響應面法(RSM)利用支架厚度和充氣壓力參數優化模擬結果。結果顯示,最佳支架設計為PLLA材料,厚度為50μm,膨脹壓力為0.0273 MPa的支架。該最佳參數為64 MPa,徑向反沖為35.11%,縱向後坐為-3.52%,縮短為4.43%,膨脹直徑為2.46 mm。至於PDLLA而言,最佳結果是厚度為50μm且膨脹壓力為0.0141MPa的支架。該最佳參數為33 MPa,徑向反沖為19.54%,縱向後坐為-0.85%,縮短為1.11%,膨脹直徑為2.29 mm。根據結果,PLLA材料具有較好的機械強度和降解率。


    The stent is a tiny wire mesh tube one for treating patients with coronary heart disease. The stent performance is affected by the design of its strut and link. The material used to build the scaffold also affects its performance regarding the ability of a stent to expand due to the pressure test. This paper presents the optimization of a numerical result of a balloon expandable stent in responding to various inflated pressures. A 3D stent model is made with a size of 20 mm long and an outer diameter of 1.6 mm. It is tested with various inflated pressure by using finite element method (FEM) with Abaqus 6.13 software in order to obtain the mechanical performance such as von mises, radial recoil, longitudinal recoil, foreshortening, and inflated diameter. Simulations are performed on stents with various stent thickness of 50 µm, 75 µm, and 100 µm by using various inflated pressures. The simulation results are then optimized by using response surface method (RSM) with the parameters of stent thickness and inflated pressure.
    The results show that the optimal stent design is stent with a thickness of 50 µm and expansion pressure of 0.0273 MPa for PLLA. The responses generated from this optimal parameter are von mises of 64 MPa, radial recoil of 35.11%, longitudinal recoil of -3.52%, foreshortening of 4.43%, and an inflated diameter of 2.46 mm. While for PDLLA, the optimal result is a stent with a thickness of 50 µm and expansion pressure of 0.0141 MPa. The responses generated from this optimal parameter are von mises of 33 MPa, radial recoil of 19.54%, longitudinal recoil of -0.85%, foreshortening of 1.11%, and an inflated diameter of 2.29 mm. Based on the results, PLLA wins because it has better mechanical strength and degradation rate.

    ABSTRACT ii 摘要 iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 6 CHAPTER 3 MECHANICAL STRENGTH OF STENT 10 3.1 Stent 10 3.1.1 Stent Expansion Mechanism 11 3.1.2 Design Form 12 3.1.3 Stent Material Composition 13 3.2 Mechanical Properties of Materials 14 3.2.1 Material Deformation Factor 14 3.2.2 Tensile Strength 15 3.2.3 Von Mises 15 3.2.4 Displacement 16 3.2.5 Radial Recoil 16 3.2.6 Foreshortening 16 3.2.7 Longitudinal Recoil 17 CHAPTER 4 RESEARCH METHOD 18 4.1 Preliminary Study 18 4.2 Research Objects 18 4.3 Finite Element Method (FEM) 19 4.4 Response Surface Method (RSM) 24 4.4.1 First Order Modeling 25 4.4.2 Second Order Modeling 25 CHAPTER 5 RESULT AND DISCUSSION 27 5.1 Data Analysis for Optimization 27 5.2 Validation of the Regression Model 30 5.3 Optimization of Design Parameters over Responses 31 5.4 Comparison between Optimization Results and Simulation Results 34 CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS 36 6.1 Conclusions 36 6.2 Future Directions 36 REFERENCES 38 APPENDIX 41 Appendix 1. The results of simulation for PLLA first-order model 41 Appendix 2. The results of simulation for PDLLA first-order model 42 Appendix 3. The ANOVA test results for each PLLA first-order response 43 Appendix 4. The ANOVA test results for each PDLLA first-order response 47 Appendix 5. The model calculation results compared to simulation results for PLLA 51 Appendix 6. The model calculation results compared to simulation results for PDLLA 52 Appendix 6. Response Optimizer Result for PLLA 53 Appendix 6. Response Optimizer Result for PDLLA 54 Appendix 7. Pressure Test Simulation Steps Using Abaqus 6.13 Software 55

    [1] WHO, “Cardiovascular diseases (CVDs),” 2017. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [Accessed: 20-Mar-2019].
    [2] F. Forgarotto and P. F. A. and I. M.Conti, “Finite Element Analysis of Coronary Artery Stenting,” Università degli Studi di Pavia, Pavia, 2011.
    [3] K. Basu, P. Ghosh, S. Das, and A. Chanda, “Computational Assessment of Stress Development during Deployment of Commercially Available Stents,” Int. J. Eng. Innov. Technol., vol. 2, no. 4, pp. 458–464, 2013.
    [4] A. E. Tontowi, P. Ikra, and W. Siswomihardjo, “Mapping of coronary stent demand of several hospitals in Indonesia and its forecasting,” Proc. 2013 3rd Int. Conf. Instrumentation, Commun. Inf. Technol., Biomed. Eng. Sci. Technol. Improv. Heal. Safety, Environ., ICICI-BME 2013, pp. 436–439, 2013.
    [5] D. Mantovani and M. Morajev, “Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities,” Int. J. Mol. Sci., vol. 12, no. 12, pp. 4250–4270, 2011.
    [6] J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000.
    [7] A. E. Tontowi, H. Hariawan, M. Rinastiti, W. Siswomihardjo, and I. Pratama, “Strength and displacement of open cell designs of coronary stent in responding of various inflated pressures,” in 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 2015, pp. 18–21.
    [8] C. Lally, P. J. Prendergast, and D. J. Kelly, “Stents,” Wiley Encyclopedia of Biomedical Engineering, vol. 38. John Wiley & Sons, Inc., pp. 3345–3354, 2006.
    [9] A. Schiavone and L. G. Zhao, “A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment,” Mech. Adv. Mater. Mod. Process., vol. 1, no. 1, pp. 1–15, 2015.
    [10] A. R. Sivaraos, A. Samsudin, K. Dubey, P. Kidd, and K. R. Milkey, “Comparison between Taguchi Method and Response Surface Methodology (RSM) in Modelling CO2 Laser Machining,” Jordan J. Mech. Ind. Eng., vol. 8, pp. 35–42, 2014.
    [11] M. A. Hadiyat, “Response-surface dan Taguchi: Sebuah alternatif atau kompetisi dalam optimasi secara praktis,” Pros. Semin. Nas. Ind. Madura, pp. 134–139, 2012.
    [12] M. De Beule and P. D. ir. P. V. Prof. Dr. ir. Rudy Van Impe Prof. Dr. ir. Benedict Verhegghe, “Finite Element Stent Design,” Ghet University, Belgium, 2008.
    [13] I. D. Pratama and A. E. Tontowi, “Optimasi Parameter Desain Stent Berbahan Baku Poly Llactic Acid (PLLA) Untuk Memperoleh Sifat Mekanis Optimal Berdasarkan Nilai Recoil, Foreshortening Dan Tegangan Von Mises Menggunakan Metode Response Surface,” Universitas Gadjah Mada, Yogyakarta, 2017.
    [14] P. S. Nursetyasti and A. E. Tontowi, “Optimasi Parameter Desain Bare Metal Stent Berbahan Baku Cobalt Chromium L605 Untuk Memperoleh Fleksibilitas Terbaik Menggunakan Metode Response Surface,” Universitas Gadjah Mada, Yogyakarta, 2017.
    [15] Q. Wang, G. Fang, Y. Zhao, G. Wang, and T. Cai, “Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents,” J. Mech. Behav. Biomed. Mater., vol. 65, pp. 415–427, 2017.
    [16] N. D. R. Blair A. Lennon, G. Menary, “Parametric Study to Evaluate the Effect of Strut Geometry on PLLA Coronary Stent Recoil,” Sci. Age Exp., pp. 648–658, 2017.
    [17] A. E. Tontowi, I. S. Setyaningtyas, N. Taufik, and R. A. Adani, “Analysis of User Acceptability Factors for Optimum Design of Coronary Stent,” ICBETA 2014, vol. 1. Yogyakarta, 2014.
    [18] O. S. Ramadhan and A. E. Tontowi, “Model Stent Berbahan Baku Stainless Steel 316L dan Cobalt Chromium L605 untuk Uji Ekspansi Menggunakan Software Abaqus 6.11,” Universitas Gadjah Mada, Yogyakarta, 2016.
    [19] A. Triani and A. E. Tontowi, “Optimasi Parameter Desain Stent Berbahan Baku Cobalt Chromium L605 Berdasarkan Solid Mechanics Aspect Menggunakan Metode Response Surface,” Universitas Gadjah Mada, Yogyakarta, 2017.
    [20] W. Wu, D. Gastaldi, K. Yang, L. Tan, L. Petrini, and F. Migliavacca, “Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 176, no. 20, pp. 1733–1740, 2011.
    [21] J. Li, F. Zheng, X. Qiu, P. Wan, L. Tan, and K. Yang, “Finite element analyses for optimization design of biodegradable magnesium alloy stent,” Mater. Sci. Eng. C, vol. 42, pp. 705–714, 2014.
    [22] H. Hermawan and D. Mantovani, “Process of prototyping coronary stents from biodegradable Fe-Mn alloys,” Acta Biomater., vol. 9, no. 10, pp. 8585–8592, 2013.
    [23] P. Sukamporn, S. J. Baek, W. Gritsanapan, S. Chirachanchai, T. Nualsanit, and P. Rojanapanthu, “Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study,” Mater. Sci. Eng. C, vol. 77, pp. 1068–1077, 2017.
    [24] G. Sangiorgi et al., “Engineering aspects of stents design and their translation into clinical practice.,” Ann. Ist. Super. Sanita, vol. 43, no. 1, pp. 89–100, 2007.
    [25] G. Ostrovsky, “Stentys Self-expanding Coronary Bare-Metal Stent System for Unusual Vessels,” 2010. [Online]. Available: http://www.medgadget.com/2010/03/stentys_selfexpanding_coronary_baremetal_stent_system_for_unusual_vessels.html. [Accessed: 20-May-2016].
    [26] Narlabs, “Cardio Vascular Stents Flow Field Analysis Of Dynamics And Structural Mechanics,” 2009. [Online]. Available: http://www.nchc.org.tw/tw/e_paper/sub_subject/index.php?%0AEPAPER_ID=51&SUB_SUBJECT_ID=47. [Accessed: 10-May-2016].
    [27] Medtronic, “Advantages of Cobalt Alloy for Coronary Stents,” 2003. [Online]. Available: http://wwwp.medtronic.com/newsroom/content/1110132739468.pdf. [Accessed: 15-May-2016].
    [28] J. Iqbal, J. Gunn, and P. W. Serruys, “Coronary stents: Historical development, current status and future directions,” Br. Med. Bull., vol. 106, no. 1, pp. 193–211, 2013.
    [29] M. J. Suttorp, P. R. Stella, J. Dens, J. M. McKenzie, K. S. Park, and P. Frambach, “Ultra-thin strut cobalt chromium bare metal stent usage in a complex real-world setting. (SOLSTICE Registry),” Netherlands Hear. J., vol. 23, no. 2, pp. 124–129, 2015.
    [30] R. A. Akbari, “Analisis Pengaruh Suhu Terhadap Kekuatan Surface Metal Seal (SMS) Packoff pada Unitized Wellhead Menggunakan Metode Elemen Hingga,” Universitas Gadjah Mada, 2013.
    [31] R. G. B. and J. K. Nisbett, Shingley’s Mechanical Engineering Design, 9th Editio. New York: McGraw-Hill, 2011.
    [32] R. G. Pauck and B. D. Reddy, “Computational analysis of the radial mechanical performance of PLLA coronary artery stents,” Med. Eng. Phys., vol. 37, no. 1, pp. 7–12, 2015.
    [33] Y. Ma et al., “Incorporating isosorbide as the chain extender improves mechanical properties of linear biodegradable polyurethanes as potential bone regeneration materials,” RSC Adv., vol. 7, no. 23, pp. 13886–13895, 2017.
    [34] S. Moaveni, Finite Element Analysis Theory and Application with ANSYS. New Jersey: Prentice-Hall, 1999.
    [35] G. C. Runger and D. C. Montgomery, Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, 2003.
    [36] H. Zhen, X. Gui-qing, and Z. Xu-tao, “Product Quality Improvement through Response Surface Methodology: A Case Study,” in Proceedings of 2013 International Conference on Technology Innovation and Industrial Management, 2013.
    [37] R. H. Myers, C. M. Anderson-Cook, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Editio. New York: John Wiley & Sons, 2009.

    無法下載圖示 全文公開日期 2024/06/17 (校內網路)
    全文公開日期 2024/06/17 (校外網路)
    全文公開日期 2024/06/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE