簡易檢索 / 詳目顯示

研究生: 蕭鈞毓
Chun-yu Hsiao
論文名稱: 高性能永磁式同步風力發電機之設計
Design of High Performance Permanent-magnet Synchronous Wind Generators
指導教授: 葉勝年
Sheng-Nian Yeh
黃仲欽
Jonq-Chin Hwang
口試委員: 張宏展
Hong-Chan Chang
吳瑞南
Ruay-Nan Wu
林志銘
Chih-Ming Lin
潘晴財
Ching-Tsai Pan
黃昌圳
Chang-Chou Hwang
陳建富
Jiann-Fuh Chen
蔡明祺
Mi-Ching Tsai
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 232
中文關鍵詞: 高性能同步風力發電頓轉轉矩轉矩漣波有限元素法
外文關鍵詞: High Performance, Synchronous, Wind Generators, Cogging torque, torque ripple, FEM
相關次數: 點閱:439下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在提出一套高性能風力發電機的設計準則,包含高效率、高感應電動勢、低電壓諧波失真、低轉矩漣波及低頓轉轉矩為目標,利用田口法及磁石修弧技術作定子與轉子之最佳化,並用同一電機結構由外部接線來改變雙三相及六相繞組,在低風速時二組三相繞組可串聯以提高輸出電壓;而在高風速時則可採並聯方式,其優點為當其中一組故障時,則另外一組可繼續發電供負載使用。藉由有限元素磁路分析套裝軟體進行磁路與電氣特性分析,從空載及加載的實驗結果探討發電機的特性,並分別以額定容量10 kW及300 W風力發電機來作應用說明並完成實作,成功驗證所提理論及設計方法,其中300 W風機與日本大廠作比較,無論是尺寸大小及材料的用量都較少,在相同轉速下的輸出功率更提高了近40%,效率也達近90%。
    本研究利用去除傳統靴部結構來簡化製作定子的製程,也就是採完全開口槽作設計,繞線方式則利用絕緣片先在電機結構外繞製完成
    ,即可套入定子齒部,此一改良可大幅度提高製程效率並節省成本。另可加裝導磁性較佳的墊片(如傳統矽鋼片或鐵質材料),此墊片可採ㄇ型或鞋型結構,卡入定子齒部,達到類似傳統具有靴部結構之定子。
    傳統模擬頓轉轉矩的方式常用全模型或是分割成對稱性結構來處理,但在大型電機或槽數與極數較多的情況下,會受限於有限元素軟體網格數目而無法分析。本文提出了一個新式快速頓轉轉矩分析方法-半磁極對法,配合有限元素套裝軟體及Matlab中的Simulink疊加方式來達到可快速求解與評估頓轉轉矩大小。並利用「力與力臂之槓桿原理」設計出一個簡易且精確的頓轉轉矩量測方式,使用日常生活容易取得的資源來設計量測工具與技術,分別進行16次的量測後再求平均值,與半磁極對之快速法結果相比,差異小於7%,驗證本研究提出之頓轉轉矩快速法的準確性與實用性。


    This dissertation is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators. The Taguchi and magnet-shaping methods are used to raise electromotive force, and to reduce voltage total harmonic distortion, respectively. The proposed six-phase and double three-phase windings structures, which consists of six windings in stator, could divide the current of the motor driver evenly and improve the machine safety. Besides, windings are connected in series to increase the output voltage at low speed and in parallel during high speed to generate electricity when either one winding fails. The magnetic and electrical characteristics, such as the magnetic field distribution, equivalent rotor magnetic flux distribution, cogging torque and induced voltage etc., are analyzed by finite element electromagnetic-field analysis software package, Maxwell_2D. Two prototypes generators, 10 kW and 300 W, respectively, are designed in accordance with the proposed method, and verified the performances under load test. The results show a 40% increase in output power with an efficiency of 90% as compared to HR-250, the bigger sized 300 W Japanese generator, which yields 75% efficiency under the same rotating speed.
    A new topology is proposed using fully open slots for the stator to reduce the manufacturing complexity by eliminating the traditional boot structure. The ㄇ-shape and shoe types of the stator preferably composed of silicon steel slice and ferrous material allow the spacers wedging into the teeth to improve the manufacturing efficiency, and to reduce the cost.
    In order to study the existence and effects of cogging torque, a novel and rapid analysis technique, half magnet pole pair (HMPP), is proposed for forecasting and effectively evaluating cogging torque. Applying the technique with the finite element method and software Matlab, one could evaluate the cogging torque efficiently, meanwhile reduce numerous computing jobs and simulation time. An example of a rotor-skewed structure used to reduce cogging torque of permanent-magnet synchronous machines is evaluated and compared with conventional analysis method for the same motor to verify the effectiveness of the proposed approach. The difference between results from the HMPP and real measurement lies within 7%, proving valuable and suitable usage of the novel method, especially for large-capacity or multiple-pole, multiple-slot machine design.

    摘要 I Abstract II 誌謝 IV 目錄 V 符號索引 X 圖目錄 XV 表目錄 XXII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 6 1.3 本文特色 8 1.4 本文大綱 11 第二章 風力發電機結構的關鍵技術及設計理論 12 2.1 前言 12 2.2 風機幾何結構 13 2.3 田口工程法介紹 16 2.4 永磁式同步發電機尺寸計算與有限元素分析 19 2.4.1 應用場合 20 2.4.2 材料選用 23 2.4.2.1 永久磁石 23 2.4.2.2 矽鋼片材料 25 2.4.2.3 導線材料 29 2.4.3 尺寸決定 30 2.4.3.1 電機相數、極數、槽數的選擇 30 2.4.3.2 磁路參數計算 33 2.4.3.3 轉子的尺寸設計 36 2.4.3.4 磁石修弧 40 2.4.3.5 定子的尺寸設計 41 2.4.4 電氣參數計算 43 2.4.4.1 感應電動勢 43 2.4.4.2 導體容許電流 45 2.4.4.3 佔槽率計算 45 2.4.4.4 銅損與鐵損 46 2.4.4.5 發電機功率 47 2.4.4.6 發電機效率 47 2.4.4.7 諧波失真 48 2.4.4.8 轉矩漣波公式 49 2.5 結語 50 第三章 高效率風力發電機之分析及設計 51 3.1 前言 51 3.2 高效率10 kW風力發電機模擬與分析 51 3.2.1 以72槽為主找出較佳的槽極數比 51 3.2.2 10 kW發電機氣隙與磁石厚度決定 52 3.2.3 10 kW發電機繞組接線 55 3.2.4 10 kW發電機轉子磁石最佳化設計 57 3.2.4.1 10 kW發電機磁石極距比 57 3.2.4.2 10 kW發電機磁石修弧 58 3.2.5 10 kW發電機定子尺寸設計 59 3.2.5.1 匝數估算 60 3.2.5.2 佔槽率計算 60 3.2.5.3 靴部尺寸 60 3.2.6 定子槽開口最佳化設計 61 3.2.6.1 槽口槽距比 61 3.2.6.2 固定增加槽開口長度 65 3.2.7 10 kW發電機靜磁分析 68 3.2.8 10 kW發電機感應電動勢分析 70 3.2.8.1 10 kW發電機空載分析 70 3.2.8.2 10 kW發電機加載分析 71 3.2.9 10 kW發電機轉矩漣波 76 3.2.10 10 kW發電機田口法分析 76 3.2.10.1 10 kW發電機用田口法之磁路分析 77 3.2.10.2 10 kW發電機用田口法之空載分析 80 3.3 高效率300W風力發電機模擬與分析 91 3.3.1 以36槽為主找出較佳的槽極數比 91 3.3.2 300 W發電機氣隙與磁石厚度決定 92 3.3.3 300 W發電機繞組接線 93 3.3.4 300 W發電機轉子磁石最佳化設計 95 3.3.4.1 300 W發電機磁石極距比 95 3.3.4.2 300 W發電機磁石修弧 95 3.3.5 定子結構及其製作方法 97 3.3.6 300 W發電機靜磁分析 99 3.3.7 300 W發電機感應電動勢分析 102 3.3.7.1 300 W發電機空載分析 102 3.3.7.2 300 W發電機加載分析 102 3.3.8 300 W發電機田口法分析 104 3.3.8.1 傳統靴部結構發電機之無載磁路分析 105 3.3.8.2 傳統靴部結構發電機無載分析 109 3.3.9 300 W發電機新型靴部結構發電機磁路分析 119 3.3.9.1 新型靴部結構發電機無載分析 122 3.3.9.2 新型靴部結構發電機加載分析 122 3.3.10 300 W發電機轉矩漣波 125 3.4 綜合比較 126 3.5 結語 130 第四章 發電機之頓轉轉矩分析 132 4.1 前言 132 4.2頓轉轉矩理論探討 133 4.3新式快速頓轉轉矩模擬分析方法 136 4.4 應用半磁極對法作發電機之頓轉轉矩分析 143 4.4.1高效率10 kW風力發電機模擬結果 143 4.4.2高效率300 W風力發電機模擬結果 145 4.5 10 kW發電機頓轉轉矩實測 148 4.6 綜合比較 150 4.7 結語 151 第五章 原型機的製作與測試結果評估 152 5.1 前言 152 5.2 量測平台規劃介紹 153 5.3 10 kW發電機測試結果與性能評估 159 5.3.1 10 kW原型機的製作流程 159 5.3.2 10 kW原型機測試結果與性能評估 167 5.3.2.1 10 kW原型機空載測試 167 5.3.2.2 10 kW原型機加載測試 171 5.3.2.3 10 kW原型機綜合比較 176 5.4 300 W發電機測試結果與性能評估 179 5.4.1 300 W原型機的製作流程 181 5.4.2 300 W原型機測試結果與性能評估探討 190 5.4.2.1 300 W原型機未加入靴部結構的空載測試 190 5.4.2.2 300 W原型機未加入靴部結構的加載測試 194 5.4.2.3 300 W原型機加入靴部結構的空載測試 197 5.4.2.4 300 W原型機加入靴部結構的加載測試 199 5.4.2.5 300 W原型機綜合比較 202 5.5 結語 203 第六章 結論與建議 204 6.1 結論 204 6.2 建議 206 參考文獻 207 附錄A 磁石極距比計算 218 附錄B 相序探討 221 附錄C 加拿大10 kW風力發電機 222 附錄D 日本300 W風力發電機 223 附錄E 真圓度量測報告 226 附錄F 實際製作的定子齒部之Maxwell_2D分析報告 229 作者簡介 231

    [1] 熊谷秀,太陽光電知多少,科學發展月刊,第383期,第34-41頁,2004年。
    [2] 陳良棟,我國推動產業綠化之歷程與成果,永續產業發展季刊,第56期,第3-9頁,2011年9月。
    [3] http://www.nownews.com/2011/03/27/91-2700124.htm,林和謙,今日新聞網,2011年3月27日。
    [4] http://www.moea.gov.tw,經濟部網站,2012年3月11日。

    [5] N. Stannard, and J. R. Bumby, “Performance Aspects of Mains Connected Small-scale Wind Turbines” IET Generation, Transmission & Distribution, vol. 1, pp. 348-356, 2007.
    [6] 張希良、郭興家、張勝雄、林矩民,風力發電技術,新文京開發出版社股份有限公司,2007年9月20日。
    [7] M. B. Nissen, “High Performance Development as Distributed Generation,” IEEE Potentials, vol. 28, pp. 25-31, 2009.
    [8] 牛山泉著、李漢庭譯,圖解風力發電入門,世茂出版有限公司,2010年11月。
    [9] V. J. Ginter and J. K. Pieper, “Robust Gain Scheduled Control of a Hydrokinetic Turbine,” IEEE Transactions on Control Systems Technology, vol. 19, pp. 805-817, 2011.
    [10] 翁萬德,台灣地區風力時序長程機率模型之建立及風力發電可行性之分析,行政院國家科學委員會八十八年度電力科技產業學術合作研究計畫,1999年7月。
    [11] 楊金石,風力發電之監控設備對系統特性的影響,台電工程月刊,第516期,第21-31頁,1999年8月。
    [12] 風力發電應用技術研習手冊,財團法人祥和文教基金會主辦,2001年9月29日。
    [13] 曹松清,新能源專輯(一),經濟日報,2001 年10月31日。
    [14] 呂威賢、江懷德,全球風電推廣應用現況與展望,工業技術研究院能源與資源研究所潔淨能源技術組,第1-20頁,2002年。
    [15] R. C. Bansal, “Three-phase Self-excited Induction Generators: An Overview,” IEEE Transactions on Energy Conversion, vol. 20, pp. 292-299, 2005.
    [16] http://www.gwec.net/,全球風能協會,2012年。

    [17] http://www.wwindea.org/home/index.php,世界風能協會,2012年。
    [18] http://www.hi-vawt.com.tw/tw/tw_about_vaswt.html,新高能源公司,2012年。
    [19] M. A. Khan, P. Pillay and K. D. Visser, “On Adapting a Small PM Wind Generator for a Multiblade, High Solidity Wind Turbine,” IEEE Transactions on Energy Conversion, vol. 20, pp. 685-692, 2005.
    [20] A. Mirecki, X. Roboam and F. Richardeau, “Architecture Complexity and Energy Efficiency of Small Wind Turbines,” IEEE Transactions on Industrial Electronics, vol. 54, pp. 660-670, 2007.
    [21] I. Munteanu, S. Bacha, A. I. Bratcu, J. Guiraud and D. Roye, “Energy-Reliability Optimization of Wind Energy Conversion Systems by Sliding Mode Control,” IEEE Transactions on Energy Conversion, vol. 23, pp. 975-985, 2008.
    [22] K. Yuen, K. Thomas, M. Grabbe, P. Deglaire, M. Bouquerel, D. Osterberg and M. Leijon, “Matching a Permanent Magnet Synchronous Generator to a Fixed Pitch Vertical Axis Turbine for Marine Current Energy Conversion,” IEEE Journal of Oceanic Engineering, vol. 34, pp. 24-31, 2009.
    [23] B. M. Nagai, K. Ameku and J. N. Roy, “Performance of a 3 kW Wind Turbine Generator with Variable Pitch Control System,” Applied Energy, vol. 86, no. 9, pp. 1774-1782, 2009.
    [24] G. Muller, M. F. Jentsch and E. Stoddart, “Vertical Axis Resistance Type Wind Turbines for Use in Buildings,” Renewable Energy, vol. 34, no. 5, pp. 1407-1412, 2009.
    [25] J. Pinto, J. C. G. Matthews and G. C. Sarno, “Stealth Technology for Wind Turbines,” IET Radar, Sonar & Navigation, vol. 4, pp. 126-133, 2010.
    [26] A. Ahmed, L. Ran and J. R. Bumby, “New Constant Electrical Power Soft-Stalling Control for Small-Scale VAWTs,” IEEE Transactions on Energy Conversion, vol. 25, pp. 1152-1161, 2010.
    [27] L. S. Miller, P. G. Migliore and G. A. Quandt, “An Evaluation of Several Wind Turbine Trailing-Edge Aerodynamic Brakes,” Journal of Solar Energy Engineering, vol. 16, pp. 198-203, 1995.
    [28] J. S. Scott and C. R. Michael, “Horizontal Axis Wind Turbine Blade Aerodynamics in Experiments and Modeling,” IEEE Transactions on Energy Conversion, vol. 22, pp. 61-70, 2007.
    [29] J. R. Bumby, N. Stannard, J. Dominy and N. McLeod, “A Permanent Magnet Generator for Small Scale Wind and Water Turbines,” International Conference on Electrical Machines, pp. 1-6, 2008.
    [30] T. A. C. Maia, O. A. Faria, A. A. R. F. E. Cardoso, F. S. Borges, H. G. Mendonca, M. A. Silva, J. A. Vasconcelos, S. R. Silva and B. M. Lopes, “Electromechanical Design for an Optimized Axial Flux Permanent Magnet Torus Machine for 10 kW Wind Turbine,” International Conference on Electrical Machines and Systems, pp. 1-6, 2011.
    [31] Z. Salameh and C. V. Nandu, “Overview of Building Integrated Wind Energy Conversion Systems,” IEEE Power and Energy Society General Meeting, pp. 1-6, 2010.
    [32] B. J. Chalmers, W. Wu, and E. Spooner, “An Axial-Flux Permanent-Magent Generator For a Gearless Wind Energy System,” Drives and Energy Systems for Industrial Growth, vol. 1, pp. 610-616, 1996.
    [33] L. E. Chaar, L. A. Lamont and N. Elzein, “Wind Energy Technology-Industrial Update,” IEEE Power and Energy Society General Meeting, pp.1-5, 2011.
    [34] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction,” IEEE Transactions on Industry Applications, vol. 45, pp. 152-160, 2009.
    [35] G. H. Kang, Y. D. Son, G. T. Kim and J. Hur, “A Novel Cogging Torque Reduction Method for Interior-Type Permanent-Magnet Motor,” IEEE Transactions on Industry Applications, vol. 45, pp. 161-167, 2009.
    [36] A. M. EL-Refaie, “Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 107-121, 2010.
    [37] J. A. Guemes, A. M. Iraolagoitia, J. I. Del Hoyo and P. Fernandez, “Torque Analysis in Permanent-Magnet Synchronous Motors: A Comparative Study,” IEEE Transactions on Energy Conversion, vol. 26, pp. 55-63, 2011.
    [38] M. Popescu, M. V. Cistelecan, L. Melcescu and M. Covrig, “Low Speed Directly Driven Permanent Magnet Synchronous Generators for Wind Energy Applications,” In Proceedings of the International Conference on Clean Electrical Power, pp. 784-788, Capril Italy, 2007.
    [39] D. Hanselman, Brushless Permanent Magnet Motor Design, Magna Physics Pub: Orono, ME, 2003.
    [40] Y. Wang, M. J. Jin, W. Z. Fei and J. X. Shen, “Cogging Torque Reduction in Permanent Magnet Flux-switching Machines by Rotor Teeth Axial Pairing,” IET Electric Power Applications, vol. 4, pp. 500-506, 2010.
    [41] S. L. Ho, N. Chen and W. N. Fu, “An Optimal Design Method for the Minimization of Cogging Torques of a Permanent Magnet Motor Using FEM and Genetic Algorithm,” IEEE Transactions on Applied Superconductivity, vol. 20, pp. 861-864, 2010.
    [42] M. S. Islam, R. Islam and T. Sebastian, “Experimental Verification of Design Techniques of Permanent-Magnet Synchronous Motors for Low-Torque-Ripple Applications,” IEEE Transactions on Industry Applications, vol. 47, pp. 88-95, 2011.
    [43] D. Wang, X. Wang, D. Qiao, Y. Pei and S. Y. Jung, “Reducing Cogging Torque in Surface-Mounted Permanent-Magnet Motors by Nonuniformly Distributed Teeth Method,” IEEE Transactions on Magnetics, vol. 47, pp. 2231-2239, 2011.
    [44] M. J. Turner, R. W. Clough, H. C. Martin and L. C. Topp, “Stiffness and Deflection Analysis of Complex Structures,” Journal of Aeronaut, vol.23, pp.805-823,1956.
    [45] A. M. Winslow, “Magnetic Field Calculation in an Irregular Triangular Mesh,” UCRL-7784-T, Rev. 1, Lawrence Radiation Laboratory, Livermore, California, 1965.
    [46] T. H. Kim, “A Study on the Design of an Inset-Permanent-Magnet-Type Flux-Reversal Machine,” IEEE Transactions on Magnetics, vol. 45, pp. 2859-2862, 2009.
    [47] J. J. Germishuizen and M. J. Kamper, “IPM Traction Machine With Single Layer Non-Overlapping Concentrated Windings,” IEEE Transactions on Industry Applications, vol. 45, pp. 1387-1394, 2009.
    [48] O. Wallmark and P. Kjellqvist, “Analysis of a Low-Cost Air-Gap Winding for Permanent Magnet Synchronous Motors,” IEEE Transactions on Energy Conversion, vol. 24, pp. 841-847, 2009.
    [49] D. M. Ionel and M. Popescu, “Finite-Element Surrogate Model for Electric Machines With Revolving Field-Application to IPM Motors,” IEEE Transactions on Industry Applications, vol. 46, pp. 2424-2433, 2010.
    [50] E. M. Tsampouris, M. E. Beniakar and A. G. Kladas, “Geometry Optimization of PMSMs Comparing Full and Fractional Pitch Winding Configurations for Aerospace Actuation Applications,” IEEE Transactions on Magnetics, vol. 48, pp. 943-946, 2012.
    [51] K. Reichert, “A Simplified Approach to Permanent Magnet and Reluctance Motor Characteristics Determination by Finite-Element Methods,” The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 25, pp. 368-378, 2006.
    [52] H. W. Lee, K. D. Lee, W. H. Kim, I. S. Jang, M. J. Kim, J. J. Lee and J. Lee, “Parameter Design of IPMSM with ConcentratedWinding Considering Partial Magnetic Saturation,” IEEE Transactions on Magnetics, vol. 47, pp. 3653-3656, 2011.
    [53] K. Yamazaki, Y. Kanou, Yu. Fukushima, S. Ohki, A. Nezu, T. Ikemi and R. Mizokami, “Reduction of Magnet Eddy-Current Loss in Interior Permanent-Magnet Motors with Concentrated Windings,” IEEE Transactions on Industry Applications, vol. 46, pp. 2434-2441, 2010.
    [54] S. Lee, Y. J. Kim and S. Y. Jung, “Numerical Investigation on Torque Harmonics Reduction of Interior PM Synchronous Motor WithConcentrated Winding,” IEEE Transactions on Magnetics, vol. 48, pp. 927-930, 2012.
    [55] K. Y. Hwang, J. H. Jo and B. I. Kwon, “A Study on Optimal Pole Design of Spoke-Type IPMSM With Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method,” IEEE Transactions on Magnetics, vol. 45, pp. 4712-4715, 2009.
    [56] J. Asama, M. Amada, M. Takemoto, A. Chiba, T. Fukao and A. Rahman, “Voltage Characteristics of a Consequent-Pole Bearingless PM Motor With Concentrated Windings,” IEEE Transactions on Magnetics, vol. 45, pp. 2823-2826, 2009.
    [57] R. O. C. Lyra and T. A. Lipo, “Torque Density Improvement in a Six-phase Induction Motor with Third Harmonic Current Injection,” IEEE Transactions on Industry Applications, vol. 38, pp. 1351-1360, 2002.
    [58] 關 和市、牛山 泉、林輝政,垂直軸風車,台大出版中心,2011年4月。
    [59] P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill Book Company, New York, 1988.
    [60] M. S. Phadke著、黎正中譯,穩健設計之品質工程,台北圖書有限公司,1989年。
    [61] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2011年4月。
    [62] S. I. Kim, J. Y. Lee, Y. K. Kim, J. P. Hong, Y. Hur and Y. H. Jung, “Optimization for Reduction of Torque Ripple in Interior Permanent Magnet Motor by Using the Taguchi Method,” IEEE Transactions on Magnetics, vol. 41, pp. 1796-1799, 2005.
    [63] A. M. Omekanda, “Robust Torque and Torque-per-inertia Optimization of a Switched Reluctance Motor Using the Taguchi Methods,” IEEE Transactions on Industry Applications, vol. 42, pp. 473-478, 2006.
    [64] C. C. Hwang, L. Y. Lyu, C. T. Liu and P. L. Li, “Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method,” IEEE Transactions on Magnetics, vol. 44, pp. 4325-4328, 2008.
    [65] C. C. Hwang, P. L. Li, F. C. Chuang, C. T. Liu and K. H. Huang, “Optimization for Reduction of Torque Ripple in an Axial Flux Permanent Magnet Machine,” IEEE Transactions on Magnetics, vol. 45, pp.1760-1763, 2009.
    [66] W. H. Kim, K. C. Kim, S. J. Kim, D. W. Kang, S. C. Go, H. W. Lee, Y. D. Chun and J. Lee, “A Study on the Optimal Rotor Design of LSPM Considering the Starting Torque and Efficiency,” IEEE Transactions on Magnetics, vol. 45, pp. 1808-1811, 2009.
    [67] A. Awada, B. Wegmann, I. Viering and A. Klein, “Optimizing the Radio Network Parameters of the Long Term Evolution System Using Taguchi's Method,” IEEE Transactions on Vehicular Technology, vol. 60, pp. 3825-3839, 2011.

    [68] Liwschitz著、程福秀譯,電機設計與計算,五洲出版社,1976年。
    [69] 系見和信著、許溢适編譯,實用電動機設計手冊,文笙書局,1996年。
    [70] 梁明祥,電機設計,文笙書局,1997年3月。
    [71] 唐任遠,現代永磁電機理論與設計,機械工業出版社,北京, 1997年。
    [72] 蕭鈞毓,六相及雙三相繞組永磁式同步電機之分析及設計,國立台灣科技大學電機系碩士論文,2007年。
    [73] http://www.small-wind.org.tw,台灣中小型風力機發展協會,2012年。
    [74] http://www.iwind.com.tw/cht_product.html,宏銳電子股份有限公司,2012年。
    [75] http://www.jetprotech.com.tw,崨豹科技股份有限公司,2012年。
    [76] http://www.hi-vawt.com.tw,新高能源科技股份有限公司,2012年。
    [77] http://www.areagroup.com.tw,鎮源綠能股份有限公司,2012年。
    [78] http://www.fgdwind.com,鴻金達能源科技股份有限公司,2012年。
    [79] http://www.compowe.com.tw,康柏威科技股份有限公司,2012年。
    [80] http://sky-denshi.co.jp,SKY,2012年。

    [81] http://www.irwindpower.com,irwindpower,2012年。

    [82] http://www.bayatenergy.co.uk,Bayat Energy,2012年。

    [83] http://www.quietrevolution.com,Quietrevolution,2012年。

    [84] http://www.wepower.us,WePower,2012年。

    [85] http://www.ugechina.com,UrbanGreen Energy,2012年。

    [86] http://www.helixwind.com/en,HelixWind,2012年。

    [87] http://www.centurywindenergy.com/vertical_wind_turbine.html,Century Wind Energy,2012年。

    [88] http://www.smj-cn.com,上海敏動機電,2012年。

    [89] 牧野 昇著,林子銘譯,永久磁鐵設計與應用,正言出版社,1983年6月。
    [90] 山川和郎、大川光吉、宮本毅信,永久磁石磁氣迴路的設計及應用,總和電子,昭和60年(1985年)。
    [91] 盧孝銘、胡永柟、賴滄智,以有限元素法對電機磁場分析之研究,電機月刊,第4期,第224-232頁,2006年4月。
    [92] 鐘雙象,硬磁材料產業研發及市場之展望,台灣磁性技術協會會訊,第1-4頁,2006年2月。
    [93] 王秀和、李光友、徐衍亮、王興華、楊玉波,永磁電機,中國電力出版社,2011年1月。
    [94] http://www.amoeba.cttnet.net,右任磁鐵,2012年。
    [95] http://magtech.tw/index.html,磁通磁性科技股份有限公司,2012年。
    [96] http://www.supermaxtw.com,秀越實業股份有限公司,2012年。
    [97] http://www.nhmagnet.com.tw/chinese/index.html,內湖磁材有限公司,2012年。
    [98] http://www.asia-magnets.com,亞洲磁材股份有限公司,2012年。
    [99] http://www.georchi.com,喬智電子,2012年。

    [100] http://www.fumaw.com.tw/index.htm,富邦/富茂企業有限公司,2012年。
    [101] http://www.cibas.it,CIBAS,2012年。

    [102] 何清佳,電機設計,全華科技圖書公司,1998年2月。
    [103] 廖福奕,小型電動機技術,全華書局,2003年5月。
    [104] 張六文、黃議興,電磁鋼片的特性與應用,電動機數位學習網, 31期,2003年6月11日。
    [105] 范揚鋒,電磁鋼片之簡介,電動機數位學習網,第23期,2003年7月9日。
    [106] http://www.leicong.com,麗鋼工業股份有限公司,2012年。

    [107] http://www.cssc.com.tw,中國鋼鐵公司,2012年。

    [108] http://www.lenmung.com/product1.html,南盟電機股份有限公司,2012年。
    [109] http://www.hsindaga.com.tw,新大嘉矽鋼股份有限公司,2012年。
    [110] http://www.steelnet.com.tw,華文專業鋼鐵網,2012年。

    [111] http://baike.baidu.com,百度百科,2012年。

    [112] http://www.nsc.co.jp,新日本製鐵株式會社,2012年。

    [113] http://zh.wikipedia.org,維基百科,2012年。

    [114] http://www.taya.com.tw/index_1.htm,大亞電線電纜,2012年。
    [115] http://www.chine.com.tw/megnetwire.htm,錡昌企業有限公司,2012年。
    [116] http://www.pewc.com.tw/tc/index.asp,太平洋電線電纜,2012年。
    [117] T. J. E. Miller and J. R. Hendershot, Design of Brushless Permanent-Magnet Motors, Magna Physis Publishing and Clarendon Press, Oxford, 1994.
    [118] T. Goplarathnam, S. Waikar, H. A. Toliyat, M. S. Arefeen and J. C. Moreira, “Development of Low Cost Multi-phase Brushless DC(BLDC) Motors with Unipolar Current Excitations,” IEEE Conference Record of Industry Applications, vol. 1, pp. 173-179, 1999.
    [119] Z. Q. Zhu, and D. Howe, “Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407-412, 2000.
    [120] 林君達,低噪音風能轉換系統用永磁式同步發電機之設計及控制,國立台灣科技大學電機系碩士論文,2009年。
    [121] 劉建村,六相永磁式同步電動機設計及故障後控制策略,國立台灣科技大學電機系碩士論文,2010年。
    [122] T. F. Chan and L. T. Yan, “Analysis and Performance of a Surface-mounted NdFeB Permanent-magnet AC Generator,” International Conference on Advances in Power System Control, vol. 2, pp. 718-722, 1997.
    [123] T. F. Chan, L. L. Lai and L. T. Yan, “Performance of a Three-phase AC Generator with Inset NdFeB Permanent-magnet Rotor,” IEEE Transactions on Energy Conversion, vol. 19, pp. 88-94, 2004.
    [124] A. Masmoudi, A. Njeh, A. Mansouri, H. Trabelsi and A. Elantably, ”Optimizing the Overlap Between the Stator Teeth of a Claw Pole Transverse-flux Permanent-magnet Machine,” IEEE Transactions on Magnetics, vol. 40, pp.1573-1578, 2004.
    [125] J. Li, K. T. Chau, J. Z. Jiang, C. Liu and W. Li, “A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation,” IEEE Transactions on Magnetics, vol. 46, pp. 1475-1478, 2010.
    [126] T. M. Blooming, D. J. Carnovale, “Application of IEEE STD 519-1992 Harmonic Limits,” IEEE Std 519-1992.
    [127] D. A. Kocabas, “Novel Winding and Core Design for Maximum Reduction of Harmonic Magnetomotive Force in AC Motors,” IEEE Transactions on Magnetics, vol.45, pp. 735-746, 2009.
    [128] S. H. Lee, J. P. Hong, S. M. Hwang, W. T. Lee, J. Y. Lee and Y. K. Kim, “Optimal Design for Noise Reduction in Interior Permanent-Magnet Motor,” IEEE Transactions on Industry Applications, vol. 45, pp. 1954-1960, 2009.
    [129] G. Pellegrino, P. Guglielmi, A. Vagati and F. Villata, “Core Losses and Torque Ripple in IPM Machines: Dedicated Modeling and Design Tradeoff,” IEEE Transactions on Industry Applications, vol. 46, pp. 2381-2391, 2010.
    [130] G. J. Wakileh著、徐政譯,電力系統諧波-基本原理、分析方法和濾波器設計,機械工業出版社,2011年1月。
    [131] K. Wang, M. J. Jin, J. X. Shen and H. Hao, “Study on Rotor Structure with Different Magnet Assembly in High-speed Sensorless Brushless DC Motors,” IET Electric Power Applications, vol. 4, pp. 241-248, 2010.
    [132] C. J. Lee and G. H. Jang, “Development of a New Magnetizing Fixture for the Permanent Magnet Brushless DC Motors to Reduce the Cogging Torque,” IEEE Transactions on Magnetics, vol.47, pp. 2410-2413, 2011.
    [133] http://www.taipower.com.tw/big/Electric_power_quality/Quality.htm,台灣電力公司,電力品質介紹,2012年。

    [134] http://www.cleanenergytechnologies.net,2012年。。

    [135] N. Bianchi and S. Bolognani, “Design Techniques for Reducing the Cogging Torque in Surface-mounted PM Motors,” IEEE Transactions on Industry Applications, vol. 38, pp. 1259-1265, Sep./Oct. 2002.
    [136] M. Dai, A. Keyhani, and T. Sebastian, “Torque Ripple Analysis of a PM Brushless DC Motor Using Finite Element Method,” IEEE Transactions on Energy Conversion, vol. 19, pp. 40-45, Mar. 2004.
    [137] G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging Analysis for Fractional Slot/Pole Permanent Magnet Synchronous Motors,” 42nd International Universities Power Engineering Conference, pp. 188-191, 2007.

    [138] D. Wang, X. Wang, Y. Yang and R. Zhang, “Optimization of Magnetic Pole Shifting to Reduce Cogging Torque in Solid-Rotor Permanent-Magnet Synchronous Motors,” IEEE Transactions on Magnetics, vol. 46, pp. 1228-1234, 2010.
    [139] J. F. Pern and S. N. Yeh, “Calculating the Current Distribution in Power Transformer Windings Using Finite Element Analysis with Circuit Constraints,” IEE Proceedings Science, Measurement and Technology, vol. 142, pp. 231-236, 1995.
    [140] C. I. Chen and S. N. Yeh, “An Improved Finite Element Method for Induction Motor Analysis,” Journal of the Chinese Institute of Electrical Engineering, vol. 3, pp. 27-36, 1996
    [141] C. I. Chen and S. N. Yeh, “An Improved Finite Element Method for Electromagnetic Field Analysis,” Journal of the Chinese Institute of Electrical Engineering, vol. 3, pp. 245-251, 1996.
    [142] T. Ohnishi and N. Takahashi, “Optimal Design of Efficient IPM Motor Using Finite Element Method,” IEEE Transactions on Magnetics, vol. 36, pp. 3537-3539, 2000.
    [143] Y. Lefevre, J. Fontchastagner and F. Messine, “Building a CAD System for Educational Purpose Based Only on a Mesh Tool and a Finite Elements Solver,” IEEE Transactions on Magnetics, vol. 42, pp. 1483-1486, 2006.
    [144] K. C. Kim, J. Lee, H. J. Kim and D. H. Koo, “Multiobjective Optimal Design for Interior Permanent Magnet Synchronous Motor,” IEEE Transactions on Magnetics, vol.45, pp. 1780-1783, 2009.
    [145] M. Andriollo, M. D. Bortoli, G. Martinelli, A. Morini and A. Tortella, “Design Improvement of a Single-phase Brushless Permanent Magnet Motor for Small Fan Appliances,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 88-95, 2010.
    [146] M. V. der Giet, E. Lange, D. A. P. Correa, I. E. Chabu, S. I. Nabeta and K. Hameyer, “Acoustic Simulation of a Special Switched Reluctance Drive by Means of Field-circuit Coupling and Multiphysics Simulation,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 2946-2953, 2010.
    [147] G. J. Li, J. Ojeda, E. Hoang and M. Gabsi, “Thermal- electromagnetic Analysis of a Fault-tolerant Dual-star Flux-switching Permanent Magnet Motor for Critical Applications,” IET Electric Power Applications, vol. 5, pp. 503-513, 2011.
    [148] H. W. Cho, K. J. Ko, J. Y. Choi, H. J. Shin and S. M. Jang, “Rotor Natural Frequency in High-Speed Permanent-Magnet Synchronous Motor for Turbo-Compressor Application,” IEEE Transactions on Magnetics, vol. 47, pp. 4258-4261, 2011. 47
    [149] C. A. Borghi, D. Casadei, A. Cristofolini, M. Fabbri and G. Serra, “Minimizing Torque Ripple in Permanent Magnet Synchronous Motors with Polymer-bonded Magnets,” IEEE Transactions on Magnetics, vol. 38, pp. 1371-1377, 2002.
    [150] H. S. Chen, D. G. Dorrell, M. C. Tsai, “Design and Operation of Interior Permanent-magnet Motors with Two Axial Segments and High Rotor Saliency,” IEEE Transactions on Magnetics, vol. 46, pp. 3664-3675, 2010.
    [151] W. Jiabin and P. Yabin, “Research of Six-pole Permanent Magnet Submersible Motor Design,” International Forum on Strategic Technology, vol. 1, pp. 545-548, 2011.
    [152] http://www.jubilee.com.tw,台灣仿真公司,2012年。

    [153] http://www.cid.com.tw,創勤有限公司,2012年。

    [154] http://www.ch-yang.com/index.php?cmsid=9,誠陽實驗室設備有限公司,2012年。

    無法下載圖示 全文公開日期 2017/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE