簡易檢索 / 詳目顯示

研究生: 王建翔
Chien-hsiang Wang
論文名稱: 奈米碳管的改質對此管甲醇羰基化活性的影響
Effects of Carbon Nanotube Modification on the activity of the tube in the Carbonlation of Methanol
指導教授: 劉端祺
Tuan-chi Liu
口試委員: 吳紀聖
Jeffrey Chi-Sheng Wu
陳郁文
Yu-Wen Chen
蕭敬業
Ching-Yeh Shiau
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 93
中文關鍵詞: 醋酸羰基化甲醇奈米碳管
外文關鍵詞: Carbonlation
相關次數: 點閱:326下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在探討以奈米碳管作為甲醇羰基化觸媒的特性,以及用氫氣和水蒸氣在高溫下處理奈米碳管對其活性的影響。所用的奈米碳管以熱化學沈積法製備,使用的溫度為700℃,並以苯為碳源,以Ni/MgO為製備的觸媒。製備時並以碳管成長的時間和溫度,來控制碳管特性。碳管的甲醇羰基化活性則以連續流動的微型反應器測量。
用作觸媒的碳管以穿透式顯微鏡(TEM),來觀察前處理後觸媒的變化,以程式升溫脫附裝置(TPD)來測量觸媒的表面酸性和甲醇及一氧化碳在觸媒上的吸附情形,以X光繞射儀來分析觸媒的晶相,以美國Quantachrome公司之autosrob-1氣體吸附儀,來測量觸媒的BET表面積、孔徑分布。
鑑定的結果顯示,奈米碳管在600℃下成長最快,在800℃形成的碳管較600℃形成者具較多的不定型碳;另由TEM觀察得知,以高溫的氫氣或水蒸氣處理奈米碳管,可使其管壁變薄,使包覆鎳金屬的碳層的厚度減低,進而增加奈米碳管的甲醇和一氧化碳吸附能力。
由觸媒活性測性可發現,經過氫氣和水蒸氣高溫處理的奈米碳管,其活性明顯大於未經處理者,各碳管的甲醇羰基化活性依甲醇1轉化率的大小為Ni/CNT(氫處理)>Ni/CNT(水蒸氣處理)>Ni/CNT(未處理),依醋酸甲酯選擇率的大小為Ni/CNT(水蒸氣處理)>Ni/CNT(氫處理)>Ni/CNT(未處理);而氫氣和水蒸氣前處理的最佳溫度都在500℃左右;不同成長時間下所獲的奈米碳管,其活性也不同,依甲醇的轉化率大小排序為1HR>2HR>3HR>4HR,但其間差距有限。


The purpose of this research was to explore the properties of carbon nanotubes as a catalyst for the carbonylation of methanol. The effects of hydrogen or steam treatment at high temperature on the activity of the tubes were also studied. The tubes used in this research were prepared by thermal chemical vapor deposition, mainly at 700℃. Benzene was used as the source of carbon. The catalyst for the growth of the tubes was Ni/MgO. The effects of the temperature and the time for the growth were examined in this study.
The carbon nanotubes were characterized by TEM, TPD, XRD, and BET. The results show that the optimum temperature for the growth of the tubes is 600℃. At this temperature, the rate of growth is the highest. The tubes produce at 800℃ have more amorphous carbon than the ones produced at 600℃. The results from TEM analyses tell that treating the tubes at high temperature with hydrogen or steam reduces the wall thickness of the tubes. The treatment can also partially eliminate the carbon layer covering the leading nickel particle, and as a consequence, increasing the ability of the particle to adsorb methanol and carbon monoxide.
The tubes been treated with hydrogen or steam have higher activity in the carbonylation of methanol than those not been treated. The activity may be arranged, according to methanol conversion, in the ordered Ni/CNT(H2 treated)>Ni/CNT(steam treated)>Ni/CNT(not treated). The selectivity may also be arranged but in a different order Ni/CNT(steam treated)>Ni/CNT(H2 treated)>Ni/CNT(not treated). The optimum temperature of the treatment is 500℃, the same for both the hydrogen and the steam. The growth time of carbon nanotubes also affects the activity of the tubes. The longer the time the lower the activity, but the difference is little.

中文摘要............................................................I 英文摘要...........................................................II 誌謝..............................................................III 目錄...............................................................IV 圖目錄.............................................................VI 表目錄...........................................................VIII 第一章 緒論.........................................................1 第二章 文獻回顧.....................................................6 2.1 甲醇羰基化反應..................................................6 2.2 均勻相觸媒......................................................9 2.3 非均勻相觸媒....................................................17 2.4 奈米碳管........................................................25 2.4.1 奈米碳管的歷史................................................25 2.4.2 奈米碳管的結構................................................26 2.4.3 奈米碳管的製程................................................29 2.4.4 奈米碳管的成長機制............................................32 第三章 實驗.........................................................34 3.1 實驗氣體、藥品與儀器設備........................................34 3.1.1 實驗氣體......................................................34 3.1.2 實驗藥品......................................................35 3.1.3 實驗儀器設備..................................................37 3.2 奈米碳管的製備..................................................38 3.3 奈米碳管的鑑定..................................................40 3.3.1 穿透式電子顯微鏡(TEM)分析.....................................40 3.3.2 BET表面積與孔隙度.............................................41 3.3.3 X-ray分析.....................................................44 3.3.4 程式升溫脫附(TPD).............................................45 3.4 奈米碳管的反應活性測試..........................................49 3.5 奈米碳管的改質..................................................53 第四章 結果與討論...................................................54 4.1 奈米碳管的性質..................................................54 4.1.1 穿透式電子顯微鏡(TEM)分析.....................................54 4.1.2 表面積與孔徑..................................................58 4.1.3 X-ray分析.....................................................61 4.1.4 程式升溫脫附..................................................63 4.1.4.1、氨氣程式升溫脫附...........................................63 4.1.4.2、氫氣程式升溫脫附...........................................63 4.1.4.3、一氧化碳與甲醇程式升溫脫附.................................64 4.1.5、成長溫度與成長時間的影響.....................................67 4.2 奈米碳管之甲醇羰基化活性........................................69 4.2.1 反應溫度的效應................................................69 4.2.2 觸媒的穩定性..................................................72 4.2.3奈米碳管改質效應...............................................75 4.2.3.1、氫處理影響.................................................75 4.2.3.2、水蒸氣處理影響.............................................78 4.2.4、奈米碳管成長時間的效應.......................................81 第五章 結論.........................................................84 參考文獻............................................................85 作者簡介............................................................93

Andersen, S. L. T. and M. S. Scurrell, “Observations on an Alternative Route for the Preparation of Rh-Zeolites Active in the Carbonylation of Methanol”, J. Mol. Catal., 18, 375(1983).

Bacsa, R. R., Ch. Laurent, A. Peigney, W. S. Bacsa, Th. Vaugien, “High Specific Surface Area Carbon Nanotubes from Catalytic Chemical Vapor Deposition Process”, Chem. Phys. Lett., 323, 566-571(2000).

Baker, R. T. K. and J. J. Chludzinski, “Filamentous Carbon Growth on Nickel-Iron Surfaces:The Effect of Various Oxide Additives”, J. catal., 64, 464-478(1980).

Baker, R. T. K., ”Catalytic Growth of Carbon Filaments”, Carbon, 27, 3, 315-323(1989).

Blasio, N. D., M. R. Wright, E. Tempesti, “The Relative Importance of Heterogeneous and Homogeneous Methanol Carbonylation Using Supported Rhodium Catalysts in the Liquid Phase”, J. Organomet. Chem., 551, 229-234(1998).

Boehm H. P., “Some Aspects of the Surface Chemistry of Carbon and other Carbons”, Carbon, 32, 5, 759-769(1994).

Chen, P., H.-B. Zhang, G.-D. Lin, Q. Hong and K. R. Tasi, ”Growth of Carbon Nanotubes by Catalytic Decomposition of CH4 or on a Ni-MgO Catalyst”, Carbon, 35, 10-11, 1495-1501(1997).

Chhowalla, M. K. and B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308(2001).

Choi, G. S. and Y. S. Cho, Y. S. Cho, J. B. Park, K. H. Son, and D. J. Kim.J. Appl. Phys. 91, 3847(2002).

Choi, K. S. and Y. S. Cho, Y. S. Cho, J. B. Park and D. J. Kim. J. Euro. Crea. Soc. 21, 2095(2001)..

Christensen, B. and M. S. Scurrell, ”Selectivity of a Heterogeneous Rhodium Catalyst for the Carbonylation of Monohydric Alcohols”, J. Chem. Soc. Faraday. Trans. I, 73, 2036(1977).

Colomer, J.-F., C. Stephan, S. Lefrant, G. V. Tendeloo, I. Willems, Z. Kónya, A. Fonseca, Ch. Laurent, J. B. Nagy, “Large-scale Synthesis of Single-Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD)Method”, Chem. Phys. Lett., 317, 83-89(2000).

Cui, S., C. Z. Lu, Y. L. Qiao, L. Cui, “Large-Scale Preparation of Carbon Nanotubes by Nickel Catalyzed Decomposition of Methanol at 600℃”, Carbon, Vol. 37, 2070-2073(1999).

Ellis, B., M. J. Howard, R. W. Joyner, 11th International Congress on Catalysis-40th Anniversary:Studies in Surface Science and Catalysis, (1996).

Feliter, D., “Production of Carboxylic Acids and Esters”, U. S. Pat., 5,026,907(1986).

Fonseca, A. , K. Hernadi, B. Nagy, D. Bernaerts, A. A. Lucas, ”Optimization of Catalytic Production and Purification of Buckytubes”, J. Mol. Catal., 107, 159-168(1996).

Forster, D. and T. C. Singleton, “Homogenous Catalytic Reaction of Methanol with Carbon Monoxide”, J. Mol. Catal., 17, 299-314(1982).
Forster, D., “Kinetic and Spectroscopic Studies of the Carbonylation of Methanol with an Iodide-Promoted Iridium Catalyst”, J. Chem. Soc. Dalton. Trans. Ⅱ, 1639-1645(1979).

Fujimoto, K., T. Shilkada, K. Omata and H. Tominaga, ”Vapor Phase Carbonylation of Methanol with Solid Acid Catalysts”, Chem. Lett., 2047(1984).

Hamato K., T. Minami, K. Shimokawa, Y. Shiroto, N. Yoneda, “Supported Rhodium Catalyst, Method of Preparing Same and Process of Producing Acetic Acid by Methanol Carbonylation Using Same”, U. S. Pat., 5,364,963(1994).

Han, J. H. and C. H. Lee, D. Y. Jung, C. W. Yang, J. B. Yoo, C. Y. Park, H. J. Kim , S.G. Yu, G. S. Park, I. T. Han, H.S. Lee, and J. M. Kim. Thin Solid Films 409, 120(2002).

Han, J. H. and S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, SG. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, Thin Solid Films. 409, 126(2002).

Hernadi, K., A. Fonseca, J. B. Nagy, D. Bernaerts and A. A. Lucas, “Fe-Catalyzed Carbon Nanotubes Formation”, Carbon, 34, 10, 1249-1257(1996).

Hohenschutz, H., N. V. Kutepow and W. Himmele, Hydrocarbon, 45, 141. (1966).

Howard, M. J., M. D. Jones, M. S. Roberts, “C1 to Acetyls:Catalysis and Process”, Catal. Today, 18, 325-354(1993).

Iijima, S., “Growth of Carbon Nanotubes”, Materials Science and Engineering B, 19, 172-180(1993).

Iijima, S., “Helical Microtubles of Graphite Carbon”, Nature, 354, 56(1991).

Isshiki, T., Y. Kijima, Y. Miyauchi, T. Kondo, “Process for Producing Carboxylic Acids”, U. S. Pat., 4,620,033(1986).

Jarrel, M. S., and B. C. Gates, “Methanol Carbonylation Catalyzed by a Polymer-Bound Rhoudium(Ⅰ)Complex”, J. Catal., 40, 225-267(1975).
Jean, G.-L., R. Perron, “Preparation of Carbonylic Acids by Carbonylation of Alcohols”, U. S. Pat., 4,351,953(1982).

Jiang, H., Z. Y. Liu, P. L. Pan, “A Novel Supported Catalyst for the Carbonylation of Methanol “, J. Mol. Catal. A, 148, 215-225(1999).

Jung, M. K. and Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, and J. W. Park. Diam. Relat. Mater. 10, 1235(2001).

Jung, M. K. and Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim. Thin Solid Films 398-399, 150(2001).

Kratschmer,W. and L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature, 347, 354 (1990).

Krivoruchko, O. P., N. I. Maksimova, V. I. Zaikovskii, “Study of Multiwalled Graphite Nanotubes and Filaments Formation from Carbonized Products of Polyvinyl Alcohol via Catalytic Graphitization at 600-800℃in Nitrogen Atmosphere”, Carbon, 38, 7, 1075-1082(2000).

Kroto,H. W. and J. R. Heath, S. C. O’Brian, R. F. Curl and R. E. Smalley, Nature, 318, 162 (1985).

Krzywicki, A., and M. Marcezwski, “Formation and Evolution of the Active Site for Methanol Carbonylation on Oxide Catalysts” J. Mol. Catal., 6, 431(1979).

Liu, T. C. and S. J. Chiu, “Promoting Effect of Tin on Ni/C Catalyst for Methanol Carbonylation”, Ind. Eng. Chem. Res., 33, 488-492(1994).
Maiti, A. and C. J. Brabec, C. Roland, and J. Bernholc, Phys. Rev. B, 52, 14850 (1995).

Matsumoto, T., T. Mizoroki and A. Qzaki, “Mechanistic Study of Methanol Carbonylation Catalyzed by an Iridium Complex in the Presence of Methyl Iodide”, J. Catal., 51, 96-100(1978).

Merenov, A. S., M. A. Abraham, “Catalyzing the Carbonylation of Methanol Using a Heterogeneous Vapor Phase Catalyst”, Catal. Today, 40, 397-404(1998).

Mizoroki, T., and N. Nakayama, Bull. Chem. Soc. Jpn., 41, 1628(1968).
Muller, F.-J., D. Matt, ”Preparation of Acetic Acid and Methyl Acetate”, U. S. Pat., 4,918,218(1990).

Ren, Z. F and Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105(1998).

Roth, J. F., J. H. Craddock, A. Hershman, and F. E. Paulik, ”Low Pressure Process for Acetic acid via Carbonylation of Methanol”, Chem Tech. Oct., 600-605(1971).

S. Iijima, Nature 354, 56 (1991).

Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tomler, Alan M. Cassell, Hongjie Dai, Science, 283, 512 (1999).
Sunley, G. J. and D. J. Watson, “High Productivity Methanol Carbonylation Catalysis Using Iridium – the CativaTM Process for the Manufacture of Acetic Acid”, Catal. Today, 58, 293-307(2000).

Terrones, M., “Science and Technology of the Twenty-first Century:Synthesis, Properties and Applications of Carbon Nanotubes”, Annu. Rev. Mater. Res., 33, 419-501(2003).

Webber, K. M., B. C. Gates, and W. Drenth, “Design and Synthesis of a Solid Bifunctional Polymer Catalyst for Methanol Carbonylation”, J. Catal., 47, 269(1997).

Wegman, R. W. and D. J Schreck, “Production of Carboxylic Acids from Alcohols Using Rhodium Complex Catalysts and Organic Ester Source”, U. S. Pat., 5,026,907(1991).

Weymouth, F. J. and A. F. Millidge, “The Manufacture and Use of Acetic acid”, Chemistry and Industry, May, 887-893(1966).

Yashima, T. Y., Y. Orikasa, N. Takahashi and N. Hara, “Vapor Phase Carbonylation of Methanol over Rh-Y Zeolite”, J. Catal., 59, 53-60(1979).

Zaretskiy, S. N., Y. K. Hong, D. H. Ha, J. H. Yoon, J. H. Yoon, “Growth of Carbon Nanotubes from Co Nanoparticles and C2H2 by Thermal Chemical Deposition”, Chem. Phys. Lett., 372, 300-305(2003).

田鴻立, “以硫與磷改質後之活性碳纖維為擔體所進行之非均勻相觸媒甲醇羰基化反應研究”, 臺灣科技大學化工系碩士論文(1998)。

李元堯,“21 世紀的尖端材料 - 奈米碳管”,化工技術,第120期(2002)。

林俊發, “”使用鎳/活性碳為觸媒隻甲醇羰基化反應”, 技術學院化工系碩士論文(1990)。

林敬堯, “甲醇在Rh/C及Rh/NaX觸媒上之羰基化反應”, 技術學院化工系碩士論文(1995)。

林志誠, “利用垂直式化學氣相沈積設備量產奈米碳管” 中正大學化工系碩士論文(2003)。

陳吟足, “硼化鎳/活性碳觸媒於甲醇碳基化反應之研究”, 第六屆觸媒及反應工程研討會(1989)。

蔡宗凱, “碳纖維及活性碳承載之鎳觸媒於甲醇羰基反應之比較研究” 技術學院化工系碩士論文(1997)。

莊坤榮, “奈米碳管的觸媒性質及羰基化活性” 臺灣科技大學化工系碩士論文(2004)。

QR CODE