簡易檢索 / 詳目顯示

研究生: 張維恩
Wei-En Chang
論文名稱: 沉積二氧化鈦於奈米碳管表面之電化學電容分析
Electrochemical capacitor characteristics of TiO2 nanostructures coated onto carbon nanotubes
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
趙良君
Liang-Chiun Chao
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 奈米碳管二氧化鈦電雙層電容器
外文關鍵詞: Carbon nanotube, Titanium dioxide, Electric double-layer capacitor
相關次數: 點閱:340下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗以矽基板做為基底在上方成長奈米碳管束陣列,並以奈米碳管束陣列為模板披覆二氧化鈦做為電化學電容器的電極材料。奈米碳管有高導電性、高化學穩定性與高比表面積之特性,利用氣相沉積法成長奈米碳管束陣列之前先以網格布遮蔽基板,以簡單與低成本的方式定義柱狀陣列圖形樣式以增加電化學電雙層電容實驗中電介質電解液與電極的接觸面積。二氧化鈦有良好的偽電容特性,藉由氧化還原與可逆的法拉第電荷轉移可有效提升電雙層電容特性。溫度對於電化學電容器的電極有顯著的影響,會影響二氧化鈦的結構缺陷、應力或是結晶性等特性,常見的方式有後退火與控制電極的材料成長溫度。本實驗分別以後退火與控制電極的材料成長溫度製備二氧化鈦,由實驗結果得知控制二氧化鈦成長溫度的製程有較高的電容值。二氧化鈦/奈米碳管由循環伏安量測法可在成長溫度350℃得到最佳電容值723.8F/g。與奈米碳管電極的電容值0.5 F/g做比較,披覆二氧化鈦後的電極電容值成長倍率可達1447倍,是良好的電化學電極材料。


    Vertically aligned carbon nanotube (CNT) arrays were grown on the silicon wafer, which was used as a template for TiO2 nanostructure growth. The nanostructure was used as a material for building an electrochemical capacitor. CNTs have many special properties such as chemical stability, good conductivity and high aspect ratio. By synthesizing the silicon wafer with mesh before growing the CNTs, the CNTs pattern can be designed to improve the electrolyte contact area of electrode. TiO2 exhibited extremely good pseudo-capacitor characteristics for redox reactions and reversible Faraday reaction. CNTs coated with TiO2 could be used to effectively enhance the electrochemical capacitor characteristic. The process temperature has significant effects on electrode formation. It affects the structural defects, stress, crystallinity of TiO2. We prepared TiO2 by controlling the growth temperatures and the post annealing in a vacuum environment. Using electric double-layer capacitor measurement, the capacitance could reach as high as 723.8 F/g with TiO2 growth temperature of 350℃. From the experimental results, the TiO2/CNT maintained stable electrochemical characteristics. The synthesized TiO2/CNT was suitable for the electrochemical applications.

    論文摘要 (中文) I 論文摘要 (英文) II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 奈米碳管 (Carbon Nanotube) 1 1.1.1 奈米碳管的結構 2 1.1.2 奈米碳管的特性 4 1.2 電雙層超級電容器 (Electric Double-Layer Capacitor) 6 1.2.1 電雙層超級電容器的介紹 6 1.2.2 以碳材料做為EDLC的電極 7 1.2.3 偽電容 (Pseudo-capacitance) 7 1.2.4 電雙層超級電容器的應用 7 1.3 二氧化鈦 (Titanium dioxide, TiO2) 8 1.3.1 二氧化鈦的介紹 8 1.3.2 二氧化鈦的結構 8 1.3.3 二氧化鈦作為電極 10 1.4 射頻磁控濺鍍系統 (Radio-frequency magnetron sputtering, RFMS) 11 1.4.1 濺鍍的介紹 11 1.5 研究動機 13 1.5.1二氧化鈦/奈米碳管複合材料 13 第二章 實驗方法 14 2.1 實驗流程 14 2.2 製備流程 15 2.2.1 基板準備 15 2.2.2 奈米碳管束陣列 15 2.2.3 電子束蒸鍍機 (E-beam) 蒸鍍 18 2.2.4 以熱化學氣相沉積法 (TCVD) 成長奈米碳管 19 2.2.5 以射頻磁控濺鍍系統 (RFMS) 成長TiO2 22 2.3 特性分析 27 2.3.1 掃描式電子顯微鏡 (Scanning electron microscope; SEM) 27 2.3.2 場發穿透式電子顯微鏡 (Field-emission Transition microscope, FETEM) 28 2.3.3 拉曼光譜分析儀 (Raman spectroscopy) 30 2.3.4 X-射線繞射分析儀 (X-ray diffractometer) 31 2.4 EDLC量測 32 2.4.1 實驗裝置 32 2.4.2 循環伏安法 (Cyclic voltammetry, CV) 35 2.4.3 充放電量測法 (Charge-discharge measurement) 37 第三章 結果與討論 39 3.1 電極材料分析 39 3.1.1 CNTs與TiO2/ CNTs的SEM樣貌分析 39 3.1.2 TiO2/ CNTs的拉曼光譜分析 49 3.1.3 TiO2/ CNTs的TEM晶格與形貌分析 52 3.1.4 TiO2/ CNTs的XRD分析 58 3.2 EDLC超級電容器量測分析 62 3.2.1循環伏安法 62 3.2.2充放電法 68 3.3量測結果與分析討論 72 3.3.1 EDLC的量測整理與分析討論 72 第四章 結論 75 參考文獻 76

    [1] S. Iijima, “Helcal microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [2] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 354, pp. 603-605, 1993.
    [3] J. W. Mintnire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol. 33, pp. 893-902, 1995.
    [4] R. Satio, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.
    [5] C. L. Amiot, S. Xu, S. Liang, L. Pan, and J. X. Zhao, “Near-infrared fluorescent materials for sensing of biological targets,” Sensors, vol. 8, pp. 3092, 2008.
    [6] X. F. Wang, D. Z. Wang, and J. Liang, “Carbon nanotube capacitor materials loaded with different amounts of ruthenium oxide,” Acta Phys. –Chim. Sin., vol. 19, pp. 509-513, 2003.
    [7] S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, “Formation and field-emission of carbon nanofiber films on metallic nanowire arrays,” Electrochem. Solid-State Lett., vol. 2, pp. 247-250, 1999.
    [8] Ş Erkoç, “From carbon nanotubes to carbon nanorods,” Int. J. Mod. Phys. C, vol. 11, pp. 1247-1255, 2000.
    [9] M. Zhang, J. H. Zhao, Z. Wu, B. Q. Wei, J. Liang, D. H. Wu, L. M. Cao, Y. F. Xu, and W. K. Wang, “Large-area synthesis of carbon nanofiber films,” J. Mater. Sci. Lett., vol. 17, pp. 2109-2111, 1998.
    [10] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, pp. 351-355, 2008.
    [11] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon., vol. 4, pp. 611-622, 2010.
    [12] F. Schwierz, “Graphene transistors,” Nature Nanotech., vol. 5, pp. 487-496, 2010.
    [13] Y. M. Chen, J. H. Cai, Y. S. Huang, K. Y. Lee, and D. S. Tsai, "Preparation and characterization of iridium dioxide-carbon nanotube nanocomposites for supercapacitors," Nature Nanotech., vol. 22, pp. 115706, 2011.
    [14] M. C. K. Sellers, B. M. Castle, and C. P. Marsh, "Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors," J. Solid State Electrochem., vol. 17, pp. 175-182, 2013.
    [15] N. L. Wu, ”Nanocrystalline oxide supercapacitors,” Mater. Chem. Phys., vol. 75, pp. 6-11, 2002.
    [16] M. Landmann, E. Rauls, and W. G. Schmidt, “The electronic structure and opticalresponse of rutile, anatase and brookite TiO2,” J. Phys.: Condens. Matter, vol. 24, pp 1-5, 2012.
    [17] L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, and H. Peng, ”Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications,” Adv.Mater., vol. 23, pp. 3730-3735, 2011.
    [18] A. Fujishima, and K. Honda, ” Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
    [19] N. Satoh, T. Nakashima, and K. Yamamoto, “Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania,” Sci. Rep., vol. 3, pp. 1-6, 2013.
    [20] D. Dambournet, I. Belharouak, and K. Amine, “Taiored preparation methods of TiO2 anatase, rutile, brookite : mechanism of formation and electrochemical properties,” Chem. Mater., vol. 22, pp. 1173-1179, 2010.
    [21] D. A. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," J. Mater. Sci., vol. 46, pp. 855-874, 2011.
    [22] C. S. Lim, K. H. Teoh, C. W. Liew, and S. Ramesh, “Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol) elithium perchlorate based polymer electrolyte incorporated with TiO2,” Mater. Chem. Phys., vol. 143, pp. 661-667, 2014.
    [23] K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., vol. 81, pp. 7764-7772, 1997.
    [24] J. Cooper, Plasma spectroscopy, London: Institute of physics and the physical society, 1966.
    [25] H. Shi, “Activated carbon powder and double layer capacitance,” Electrochim. Acta, vol. 41, pp. 1633-1639, 1996.
    [26] I. Tanahashi, “Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber,” J. Appl. Electrochem., vol. 35, pp. 1067-1072, 2005.
    [27] M. M. Shaijumon, F. S. Ou, L. Ci, and P. M. Ajayan, “Synthesis of hybrid nanowire arrays and their applications as high power supercapacitor electrodes,” Chem. Commum., pp. 2373-2375, 2008.
    [28] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Appl. Phys. Lett., vol. 94, pp. 133104-133104-3, 2009.
    [29] M. Katayama, K.-Y. Lee, S. Honda, T. Hirao, and K. Oura, "Ultra-low-threshold field electron emission from pillar array of aligned carbon nanotube bundles," Jpn. J. Appl. Phys., vol. 43, pp. L774-L776, 2004.
    [30] K. V. Dijk, H. G. Schaeken, J. G. C. Wolke, and J. A. Jansen, “Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings,” Biomaterials, vol. 17, pp. 405-410, 1996.
    [31] D. H. Zhang and D. E. Brodie, “Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition,” Thin Solid Films, vol. 238, pp. 95-100, 1994.
    [32] J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, pp. 567-574, 1998.
    [33] C. Aprile, L. Maretti, M. Alvaro, J. C. Scaiano, and H. Garcia, “Long-lived (minutes) photoinduced charge separation in a structured periodic mesoporous titania containing 2, 4, 6-triphenylpyrylium as guest,” J. Chem. Soc., Dalton Trans., vol. 40, pp. 5465-5470, 2008.
    [34] A. S. Attar and Z. Hassani, “Fabrication and growth mechanism of single-crystalline rutile TiO2 nanowires by liquid-phase deposition process in a porous alumina template,” J. Mater. Sci. Technol., vol. 31, pp. 823-833, 2015.
    [35] V. Tamilselvan, D. Yuvaraj, R. R. Kumar, and K. N. Rao, “Growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation,” Appl. Surf. Sci., vol. 258, pp. 4283-4287, 2012.
    [36] T. Takahashi, H. Nakabayashi, J. Tanabe, and N. Yamada, “Correlation between crystallographic orientations and Raman spectra of TiO2 sputtered films with changing degrees of plasma exposure,” J. Vac. Sci. Technol., A, vol. 21, pp. 1419-1423, 2003.
    [37] X. Meng, D. W. Shin, S. M. Yu, J. H. Jung, H. I. Kim, H. M. Lee, Y. H. Han, V. Bhoraskar, and J. B. Yoo, “A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance,” Nano Lett., vol. 9, pp. 1-9, 2014.
    [38] M. Salari, S. H. Aboutalebi, A. T. Chidembo, I. P. Nevirkovets, K. Konstantinov, and H. K. Liu, "Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile," Phys. Chem. Chem. Phys., vol. 14, pp. 4770-4779, 2012.
    [39] M. V. Swapna and K. R. Haridas, “Sonochemical synthesis and morphological study of nanocrystalline rutile TiO2,” The Chemist., vol. 88, pp. 1-6, 2012.
    [40] R. Cebulla, R. Wendt, and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous RF and DC excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties,” J. Appl. Phys., vol. 83, 1087-1095, 1998.
    [41] T. Namazu, S. Inoue, H. Takemoto, and K. Koterazawa, “Mechanical properties of polycrystalline titanium nitride films measured by XRD tensile testing,” IEEJ Trans. SM, vol. 125, pp. 374-379, 2005.
    [42] M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO films,” J. Cryst. Growth, vol. 220, pp. 254-262, 2000.
    [43] V. Baglio, C. D’Urso, A. D. Blasi, R. Ornelas, L. G. Arriaga, V. Antonucci, and A. S. Arico, “Investigation of IrO2/Pt electrocatalysts in unitized regenerative fuel cells,” J. Electrochem. Soc., vol. 147, pp. 2018-2022, 2000.
    [44] T. Brezesinski, J. Wang, J. Polleux, B. Dunn, and S. H. Tolbert, “Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors,” J. Am. Chem. Soc., vol. 131, pp. 1802-1809, 2009.
    [45] T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu, and Y. Tong, “Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors,” IEEJ Trans. SM, vol. 125, pp. 374-379, 2005.

    QR CODE