簡易檢索 / 詳目顯示

研究生: 王勝芳
SHENG-FANG WANG
論文名稱: 氧代氮代苯并環己烷/二氧化鈦混掺材料製備及光敏親疏水性探討與液體微量傳輸應用
Preparation of Benzoxazine/TiO2 Hybrid Composite and Characterization of UV Responsive Property for Hydrophobicity to Hydrophilicity and Micro-Liquid Transformation
指導教授: 陳建光
Jem-Kun Chen
口試委員: 張豐志
Feng-Chin Chang
邱顯堂
Hsien-Tang Chin
蘇清淵
Ching-Iuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 液體微量傳輸光敏親疏水
外文關鍵詞: UV Responsive, Micro-Liquid Transformation
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用低表面能高分子:氧代氮代苯并環己烷與光觸媒材料;TiO2奈米粒子組成高分子奈米薄膜。在條件70% 氧代氮代苯并環己烷與30% 二氧化鈦在210℃聚合2小時之薄膜,能獲得超疏水表面薄膜並能在紫外光催化下使表面產生吸附力增加。藉由AFM接觸式探針測得紫外光照射前吸附力為0.72nN而照射後提升為5.76nN,此吸附力改變足以將原本水之滾動角從 4° 增加到 60° 以上仍未滾動,如此對水滴吸附力讓我們能應用於液體的微量傳輸上。在80% 氧代氮代苯并環己烷與20% 二氧化钛在270℃聚合2小時之薄膜,能在光催化後從 80°到 0°特性並可以不斷的光催化和真空烘乾程序使表面從親疏水間轉換。


    Benzoxazine is used recently to form a superhydrophobic surface without halogen element. Titanium dioxide (TiO2) exhibiting hydrophilic and photocatalytic properties is known as a self-cleaning material. We attempted to hybridize both Benzoxazine and TiO2 nanoparticles with various weight ratios to include both functions of hydrophobic and self-cleaning in one material.
    The water contact angle of benzoxazine hybrid material containing 20% titanium dioxide after 270℃ polymerization decreased from 80° to 0°under UV irradiation. The contact angle returned from 0° to 80° after drying it in vaccum oven. This behavior was defined as the UV responsive property for hydrophilic and hydrophobic after repeating the process cyclically. The benzoxazine hybrid material with UV responsive property for hydrophilic and hydrophobic could apply usefully as a self-cleaning material. However, the UV responsive behavior benzoxazine hybrid material containing 10% and 30% titanium dioxide was unobvious. Adhesion force and roll angle of benzoxazine hybrid surface containing 30% titanium dioxide after 210℃ polymerization from increased 0.72 nN to 5.76 nN and 4° to 60° through UV exposure, respectively. This behavior was useful to apply on a micro-liquid transformation system. In our work, we transformed a droplet liquid stably between two plates spincoating benzoxazine containing 30% titanium dioxide after 210℃ polymerization through UV exposure. The micro-liquid transformation is an important property currently for application of biochip.

    摘要 I Abstract II 目錄 IV 圖目錄 IX 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 超疏水定義原理 2 1-2-1 超疏水條件 2 1-2-2 超疏水材料原理 2 1-3 光敏化定義與原理 4 1-3-1 光敏化定義 4 1-3-2 光催化材料原理 5 1-4 研究動機 6 1-5 研究目的 6 第二章 文獻回顧與應用 7 2-1 Benzoxazine及Polybenzoxazine介紹 7 2-1-1 Benzoxazine 單體 7 2-1-2 P-a benzoxazine 單體合成方法 8 2-1-3 PP-a benzoxazine高分子聚合 9 2-1-4 P-a Benzoxazine結構分析 10 2-1-5 P-a benzoxazine熱性質分析 11 2-1-6 Polybenzoxazine表面能的探討 12 2-1-7 Polybenzoxazine 之疏水性質 12 2-2 光敏材料TiO2介紹 15 2-2-1 TiO2 型態 15 2-2-2 TiO2 光催化的機制 15 2-2-3 影響TiO2薄膜光催化性能因素 17 2-2-3-1 晶體結構的影響 17 2-2-3-2 晶格缺陷的影響 19 2-2-3-3 晶面的影響 20 2-2-4 TiO2超親水性 21 2-3 表面接觸角介紹 25 2-3-1 液滴濕潤表面現象 25 2-3-2 表面接觸角量測 27 2-3-3 滾動角 28 2-4 超疏水原理和機制 29 2-5 使用奈米粒子製造粗糙表面之文獻介紹 33 2-6 以Polybenzoxazine製備超疏水表面並UV照射使其成為超親水[35,36] 39 2-7 Polybenzoxazine 超疏親水可逆表面應用 44 2-8 表面吸附力量測量 48 第三章 Polybenzoxazine/TiO2之超疏水光敏超親水可逆表面與液體微量傳輸應用 50 3-1. 實驗目的 50 3-2. 使用儀器 50 3-3. 實驗材料與藥品 52 3-4. 實驗步驟 53 3-4-1. P-a benzoxazine 熱性質分析 53 3-4-2. P-a benzoxazine FTIR結構分析 53 3-4-3. 玻璃基材表面處理 53 3-4-4. Polybenzoxazine 濃度試驗 54 3-4-5. Polybenzoxazine/ TiO2 薄膜製備 54 3-4-6. 光敏Polybenzoxazine/TiO2薄膜製備超親水表面 55 3-4-7. TiO2亞甲基藍降解實驗 56 3-4-8. 光敏Polybenzoxazine/TiO2超親水可逆薄膜製備 56 3-4-9. Polybenzoxazine/TiO2超疏水表面光敏黏滯性變化試驗 …………………………………………………………..57 3-4-10. 接觸角量測 57 3-4-11. SEM表面形貌觀察 57 3-4-12. AFM表面吸附力量測 58 3-4-13. 紫外線光譜儀亞甲基藍吸收度量測 58 第四章 結果與討論 59 4-1. P-a benzoxazine熱性質 59 4-2. P-a benzoxazine FTIR結構分析 59 4-3. 表面接觸角量測 61 4-3-1. Polybenzoxazine 濃度試驗 61 4-3-2. Polybenzoxazine/ TiO2薄膜接觸角測量 62 4-3-3. 光敏超親水表面接觸角測量 65 4-3-4. 短時間超親水可逆薄膜接觸角探討 66 4-3-5. 長時間超親水可逆薄膜接觸角探討 68 4-4. SEM表面形貌觀察 70 4-4-1. TiO2 SEM粒徑觀察 70 4-4-2. Polybenzoxazine/TiO2薄膜SEM觀察 71 4-5. 表面吸附力量測 74 4-5-1 表面吸附力對滾動角影響 75 4-5-2 吸附力變化之液體微量傳輸應用 76 4-6. 紫外線光譜儀量測 77 第五章 結論 80 參考文獻 81 作者簡介 86

    1. R. Blossey, “Self-Cleaning Surfaces-Virtual Realities”, Nature Materials 2003, 2, p 301
    2. S. Herminghaus, “Roughness-Induced non-Wetting“, Europhys. Lett. 2000 52, p 165
    3. T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda and R. Miyagawa, “Ion-beam Modification of TiO2 Film to Multilayered Photocatalyst”, Nuclear Instruments and Methods in Physics Research B 148 (1999) p 758-761.
    4. H. Ishida US patent 5 543 516, Aug. 6, 1996
    5. W. J Burke, “3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of P-Substituted Phenols with N,N-Dimethylolamines”, J. Am. Chem. Soc. 1949, 71, p 609
    6. X. Ning and H. Ishida, “Phenolic Materials via Ring-Opening Polymerization: Synthesis and Characterization of Bisphenol-A Based Benzoxazines and Their Polymers”, J. Polym. Sci. Part A:Polym. Chem. 1994, 32, p 1121
    7. Brunovska, Z.; Liu, J. P.; Ishida, H. Macromol Chem Phys 1999, 200, p 1745
    8. Tarek Agag and Tsutomu Takeichi, “Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets“, Macromolecules 2003, 36, p 6010-6017
    9. Y. Rodriguez and H. Ishida ,Polymer 1995, 36, p 3151
    10. J. Dunkers and H. Ishida , J. Polym. Sci. Part A:Polym. Chem. 1999,37, p 1913
    11. 邱士峰,「低表面能材料於超疏水表面製備與奈米壓印微影技術之應用」,碩士論文,國立中央大學,桃園(2005)
    12. Taolei Sun, Guojie Wang, Lin Feng, Biqian Liu,Yongmei Ma, Lei Jiang, and Daoben Zhu, “Reversible Switching between Superhydrophilicity and Superhydrophobicity“, Angew. Chem. Int. Ed. 2004, 43, p 357-360
    13. K. X. Ma and T. S. Chung, “Effect of −C(CF3)2− on the Surface Energy of Main-Chain Liquid Crystalline and Crystalline Polymers”, J. Phys. Chem.B 2001, 105, p 4145
    14. C. F. Wang ,F. C. Chang, “Low-Surface-Free-Energy Materials Based on Polybenzoxazines”, Angew. Chem. Int. Ed,2006,45, p 2248
    15. H.D.Kim, H. Ishida, “A Study on Hydrogen-Bonded Network Structure of Polybenzoxazines”, J. Phys. Chem. A .,2002,106, p 3271
    16. A. Mills and S. Le Hunte, “An Overview of Semiconductor Photocatalysis”, Journal of Photochemistry and Photobiology A:Chemistry 108 (1997) p 1-35.
    17. A. Labouriau and W. L. Earl, “Titanium Solid-State NMR in Anatase Brookite and Rutile”, Chemical Physics Letter 270(1997) p 278-284.
    18. T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa and S. Kurita, “Raman Spectroscopy and Phase Transition of Anatase TiO2 under High Pressure”, Journal of Physics and Chemistry of Solids 62 (2001) p 717-721.
    19. N. Hossks,T. Sekiya and S. Kurita, “Excitonic State in Anatase TiO2 Single Crystal”, Journal of Luminescence 72-74(1997) p 874-875.
    20. V. Swamy and L. S. Dubrovinsky, “Bulk Modulus of Anatase”, Journal of Physics and Chemistry of Solids 62 (2001) p 673-675.
    21. K. Okimura, “Low Temperature Growth of Rutile TiO2 Films in Modified of Magnetron Sputtering”, Surface and Coatings Technology 135(2001) p 286-290.
    22. D. R. Burgess, T. J. Anderson, P. A. Morris Hotsenpiller and J. L.Hohman, “Solid Precursor MOCVD of Heteroepitaxial Rutile Phase TiO2”, Journal of Crystal Growth 166(1996) p 763-768.
    23. T. Sumita, H. Otsuka, H. Kubota, M. Nagata, Y. Honda and R. Miyagawa, “Ion-Beam Modification of TiO2 Film to Multilayered Photocatalyst”, Nuclear Instruments and Methods in Physics Research B 148 (1999) p 758-761.
    24. A. Hata, Y. Kai, I. Yamanaka, H. Oosaki, K. Hirota, and S.Yamazaki, “Development of Hydrophilic Outside Mirror Coated with Titania Photocatalyst”, JSAE Review 21 (2000) p 97-102.
    25. T. Watanabe, A.Nakajima,R.Wang,M.Minabe,S.Koizumi,A.Fujishima and K. Hashimoto, “Photocatalytic Activity and Photoinduced hHydrophilicity of Titanium Dioxide Coated Glass”, Thin Solid Films 351 (1999) p 260-263.
    26. K. MA, T. S. Chung and R. J. Good J“ Surface Energy of Thermotropic Liquid CrystallinePolyesters and Polyesteramide”, Polym. Sci. B 1998, 36, p 2327
    27. S. Wu, “Polymer Interface and Adhesion”, Marcel Dekker Inc. 1982, p 16
    28. J. Tsibouklis and T. G. Nevell, “Ultra-Low Surface Energy Polymers: The Molecular Design Requirements”, Adv. Mater. 2003, 14, p 647
    29. D. P. Carlson and W. Schmiegel, “ Ullmann’s Encyclopedia of Industrial Chemistry“, VCH Verlagsgesellschaft: Weinheim, 1988,p 393
    30. R. N. Wenzel, “Resistance of Solid Surface to Wetting by Water”, Ind. Eng. Chem. 1936, 28, p 988
    31. D. Quéré, “On Water Repellency”, Soft Matter 2005, 1, p 55
    32. A. B. D. Cassie and S. Baxter, “Wettability of Porous Surfaces”, Trans. Faraday Soc. 1944, 40, p 546
    33.A. B. D. Cassie and S. Baxter J. Text. Inst., 1945, 36, T67
    34. A. L Demirel, “Tuning the Surface Hydrophobicity of Polymer/Nanoparticle Composite Films in the Wenzel Regime by Composition”, Langmuir 2005, 21, p 5073
    35. 周綱彥,「交聯劑對材料表面能及熱性質之影響與超疏水至超親水間可控表面之研究」,碩士論文,國立台灣科技大學,台北(2008)
    36. Chun-Syong Liao,Chih-Feng Wang, Han-Ching Lin,§ Hsin-Yi Chou, and Feng-Chih Chang, “Tuning the Surface Free Energy of Polybenzoxazine Thin Films”, J. Phys. Chem. C, 2008, 112 (42), p 16189–16191
    37. Han-Ching Lin , Hsiou-Ling Chang , Chih-FengWang , Chih-Feng Huang and Feng-Chih Chang, “Polybenzoxazine–Silica Hybrid Surface with Environmentally Responsive Wettability Behavior“, Journal of Adhesion Science and Technology 23 (2009) p 503–511
    38. Sylvain Marliere, Daniela Urma, Jean-Loup Florens, Florence Marchi, “Multi-Sensorial Interaction with a Nano-Scale Phenomenon: the Force Curve“, Proceedings of EuroHaptics 2004, Munich Germany, June 5-7, 2004

    無法下載圖示 全文公開日期 2015/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE