簡易檢索 / 詳目顯示

研究生: 鍾顏澤
YEN-TSE CHUNG
論文名稱: 基於類神經網路之鋰離子電池動態交流阻抗估測剩餘容量之研究
Research on State of Charge Estimation for Lithium-ion Batteries using Dynamic AC Impedance and Artificial Neural Network
指導教授: 羅一峰
Yi-Feng Luo
口試委員: 王順忠
Shun-Chung Wang
鄭于珊
Yu-Shan Cheng
楊宗振
Zong-Zhen Yang
劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 鋰離子電池電池剩餘容量電池管理系統交流阻抗類神經網路
外文關鍵詞: Li-ion Battery, State of Charge(SOC), Battery Management System(BMS), AC Impedance, Neural Network(NN)
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池目前被廣泛運用在電動機車、電動汽車與行動裝置上,不論是應用在哪種產品上,鋰離子電池的剩餘容量是大眾最關心的,以電動汽、機車來說,準確的剩餘容量估測可以大幅降低駕駛的里程焦慮,可以更清楚知道何時該充電,上路時不需提心吊膽因電池沒電而無法繼續接下來的行程。
    因此本文提出一種可主動量測電池剩餘容量之估測方法,以電池交流阻抗作為估測依據,過往的交流阻抗估測電池剩餘容量為使用靜態交流阻抗做估測,因靜態交流阻抗需在電池開迴路狀態下才有辦法量測,無法即時告知使用者電池目前剩餘容量, 因此本文採量測動態交流阻抗的變化來做電池剩餘容量估測,動態交流阻抗相較於靜態交流阻抗優點為可在充放電時進行即時的交流阻抗量測,可即時估測剩餘容量。本文使用Bio-Logic BCS-815量測動態交流阻抗,並搭配MATLAB之類神經網路工具進行類神經訓練。
    實驗使用了兩種不同的正極材料進行驗證動態交流阻抗估測剩餘容量可行性。以鋰鈷作為正極材料的三星電池在自我驗證下不同剩餘容量下之平均絕對誤差皆小於1%,二次驗證電池不同剩餘容量下之平均絕對誤差皆小於2.5%,以鋰三元鎳鈷錳作為正極材料的能元電池在自我驗證下不同剩餘容量下之平均絕對誤差皆小於2%,二次驗證電池在不同剩餘容量下之平均絕對誤差皆小於4.6%。因此本文提出之方法,可利用在不同種正極材料電池之上。


    Lithium-ion batteries are currently widely used in electric scooters, electric vehicles, and mobile devices. No matter which product is used, the remaining capacity of lithium-ion batteries is what the public is most concerned about. For electric vehicles and locomotives, accurate battery state-of-charge (SOC) estimation can greatly reduce the mileage anxiety of driving, and allow users to know when to charge, so they don’t need to worry about being unable to continue the next trip because the battery is empty.
    Therefore, this thesis proposes an active SOC estimation method. The AC impedance of the battery is used as the estimation basis. In the past, the remaining capacity of the battery was estimated by using static AC impedance. However, because the static AC impedance can only be measured when the battery is in an open-circuit state, this method cannot immediately inform the user of the current remaining capacity of the battery. Therefore, in this thesis, the dynamic AC impedance is used to estimate the remaining capacity of the battery. The advantages of dynamic AC impedance compared to static AC impedance are that real-time AC impedance measurement during charging and discharging can instantly estimate the remaining capacity. This study uses Bio-Logic BCS-815 to measure dynamic AC impedance and uses neural network (NN) tools such as MATLAB for NN training.
    Two different cathode materials were used in the experiment to verify the feasibility of dynamic AC impedance estimation of SOC. The average absolute error of Samsung batteries using lithium cobalt as the positive electrode material under different SOC is less than 1.0% under self-verification, and the average absolute errors under different SOC of secondary verification batteries are all less than 2.5%. For E-one Molicel batteries using Lithium ternary nickel cobalt manganese as the positive electrode material, the average absolute error under different SOC is less than 2.0% under self-verification, and the average absolute errors under different SOC of secondary verification batteries are all less than 4.6%. Therefore, the method proposed in this study can be used in batteries with different cathode materials.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 1 1.3 文獻探討 2 1.4 論文大綱 3 第二章 鋰離子電池介紹 5 2.1 鋰離子電池構造及電化學反應介紹 5 2.2 鋰離子電池種類及特性介紹 7 2.3 鋰離子電池相關名詞介紹 8 2.4 鋰離子電池剩餘容量估測方法介紹 11 第三章 交流阻抗分析 18 3.1 交流阻抗分析概要 18 3.1.1 交流阻抗分析介紹 18 3.1.2 交流阻抗分析之系統架構 19 3.1.3 交流阻抗分析偵測 20 3.2 個別效應描述 23 3.3 交流阻抗實驗流程 26 3.3.1 電池選用篩選 26 3.3.2 動態及靜態EIS差異 32 3.3.3 動態交流阻抗實驗 34 3.4 動態交流阻抗資料分析 38 第四章 類神經網路 63 4.1 類神經網路基本概念 63 4.2 類神經網路架構介紹 65 4.2.1 前饋型類神經網路[33] 65 4.2.2 倒傳遞類神經網路 66 4.3類神經網路建立 69 4.3.1 建立訓練資料庫 70 4.3.2 建立倒傳遞類神經網路模型 71 4.3.3 訓練倒傳遞類神經網路 75 4.3.4 驗證倒傳遞類神經網路 79 第五章 實驗結果與數據 80 5.1 類神經網路驗證 80 5.2 SAMSUNG電池驗證結果 81 5.3 MOLICEL電池驗證結果 85 5.4 結果與討論 89 第六章 結論與未來展望 91 6.1 結論 91 6.2 未來展望 91 參考文獻 93

    [1] M. E. Lakkis, O. Sename, M. Corno, and D. B. Pietri, “Combined Battery SOC/SOH Estimation using a Nonlinear Adaptive Observer,” European Control Conference (ECC), 15-17 July 2015.
    [2] B. P. McGrath, D. G. Holmes, P. J. McGoldrick, and A. D. McIver, “Design of a soft-switched 6-kW battery charger for traction applications,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1136–1144, Jul. 2007.
    [3] L. R. Chen, “PLL-based battery charge circuit topology,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1344–1346, Dec. 2004.
    [4] S. S. Zhang, “The effect of the charging protocol on the cycle life of a Li-ion battery,” J. Power Sources, vol. 161, no. 2, pp. 1385–1391, Oct. 2006.
    [5] C. S. Moo, K. S. Ng, Y. P. Chen, and Y. C. Hsieh, “State-of-Charge Estimation with Open-CircuitVoltage for Lead-Acid Batteries,” 2007 Power Conversion Conference – Nagoya, 02-05 April 2007.
    [6] C. Duan, C. Wang, and M. Liu, “A fast approach for predicting battery open circuit voltage based on exponential recovery voltage,” 2017 North American Power Symposium (NAPS), 17-19 September 2017.
    [7] O. Caumont, P. Le Moigne, C. Rombaut, X. Muneret, and P. Lenain, “Energy gauge for lead-acid batteries in electric vehicles,” IEEE Transactions on Energy Conversion, vol.15, no.3, Sep 2000.
    [8] K. Sarrafan, K. M. Muttaq, and D. Sutanto, “Real-Time Estimation of Model Parameters and State-of-Charge of Li-Ion Batteries in Electric Vehicles Using a New Mixed Estimation Model,” IEEE Transactions on Industry Applications, vol.56, no.5, Sept.-Oct. 2020.
    [9] A. E. Mejdoubi, A. Oukaour, H. Chaoui, H. Gualous, J. Sabor, and Y. Slamani, “State-of-Charge and State-of-Health Lithium-Ion Batteries’ Diagnosis According to Surface Temperature Variation,” IEEE Transactions on Industrial Electronics, vol.63, no.4, April 2016.
    [10] D. Saji, P. S. Babu, and K Ilango, “SoC Estimation of Lithium Ion Battery Using Combined Coulomb Counting and Fuzzy Logic Method,” 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology, 17-18 May 2019.
    [11] Texas Instruments Inc., “Impedance Track™ Based Fuel Gauging,” (Sept. 2007) 。檢自https://www.ti.com/lit/wp/slpy002/slpy002.pdf.
    [12] S. L. Wu, H. C. Chen, M. Y. Tsai, T. C. Lin, and L. R. Chen, “AC Impedance Based Online State-of-Charge Estimation for Li-ion Battery,” 2017 International Conference on Information, Communication and Engineering (ICICE), 17-20 November 2017.
    [13] Y. D. Lee, S. Y. Park, and S. B. Han, “Online Embedded Impedance Measurement Using High-Power Battery Charger,” IEEE Transactions on Industry Applications, vol.51, no.1, Jan.-Feb. 2015.

    [14] J. A. Abu Qahouq, and Z. Xia, “Single-Perturbation-Cycle Online Battery Impedance Spectrum Measurement Method With Closed-Loop Control of Power Converter,” IEEE Transactions on Industrial Electronics, vol.64, no.9, Sept. 2017.
    [15] J. Xua, C. C. Mi, B. Caoa, and J.Caoa, “A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model,” J. Power Sources, vol. 233, pp. 277–284, July 2013.
    [16] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,台灣科技大學電機工程研究所論文,2014年2月。
    [17] 朱順益,「鋰電池快速充電波形設計」,義守大學電機工程研究所論文,2004年6月。
    [18] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,2004年第62卷第4期。
    [19] 鄭偉呈,「基於類神經網路之鋰離子電池健康狀態估測技術研究」,台灣科技大學電機工程研究所論文,2021年7月。
    [20] 林世彬,「鋰離子二次電池陰極材料LiNiO2之合成及其性質」,成功大學材料科學及工程學系博士論文,2002年6月。
    [21] L. Liua, M. Lia, L. Chua, B. Jianga, L. Ruoxub, Z. Xiaopeib, and G. Cao, “Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for highperformance batteries,” Progress in Materials Science, vol.111, June 2020.
    [22] Texas Instruments Inc., 「TI電池電量監測基礎知識培訓-TI培訓電子書籍系列」,2013年11月。 檢自
    https://www.dianyuan.com/index.php?do=ti_lesson_list&tid=15
    [23] Texas Instruments Inc., “Theory and Implementation of Impedance Track™ Battery Fuel-Gauging Algorithm in bq20zxx Product Family,” (Dec. 2006). 檢自https://www.ti.com/lit/an/slua364b/slua364b.pdf
    [24] Texas Instruments Inc., “Impedance Track™ Gas Gauge for Novices,” (Jan. 2006). 檢自https://www.ti.com/lit/an/slua375/slua375.pdf
    [25] J. Huang, Z. Li, and J. Zhang, “Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging,” J. Power Sources, vol. 273, pp. 1098–1102, Jan. 2015.
    [26] Bio-Logic Inc., “EIS measurements: Potentio or Galvano mode ?,” (Nov. 2013) 檢自https://www.biologic.net/wp-content/uploads/2019/08/battery-potentio-or-galvano-eis_electrochemistry-an49.pdf
    [27] G. Nagasubramanian, E. P. Roth, and D. Ingersoll, “Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells,” Battery Conference on Applications and Advances, pp. 91-96, 1999.
    [28] 朱翊禎,「深共熔離子液體與有機電解質於電雙層電容器與染料敏化太陽能電池之應用」,清華大學化學工程研究所碩士論文,100年6月。
    [29] Samsung Inc., “Lithium Ion Battery-ICR18650-26J” Specification of product, ver. 2.0, 2016.
    [30] Molicel Inc., “Lithium-Ion Recharge Battery Product Data Sheet.”
    [31] O. S. Ebrahim, M. A. Badr, A. S. Elgendy, and P. K. Jain, “ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 652-660, Sep. 2010.
    [32] S. V. Puranik, A. Keyhani, F. Khorrami, W. H. Jung, and S. H. Kim,“Neural Network Modeling of Proton Exchange Membrane Fuel Cell,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 474-483, Jun. 2010.
    [33] 李國勇、楊麗娟,「神經、模糊、預測控制及其它 MATLAB 實現(第四版)」,電子工業出版,2018 年 11 月。

    [34] 王進德、蕭大全,「類神經網路與模糊控制理論入門」,全華科 技圖書出版,2007 年 1 月。
    [35] A. Hussein, “Capacity Fade Estimation in Electric Vehicle Li-Ion Batteries using Artificial Neural Network,” IEEE Trans. Industry Applications., vol. 51, no. 3, pp. 2321-2330, May/Jun. 2015.
    [36] A. Hussein, “Adaptive Artificial Neural Network-Based Models for Instantaneous Power Estimation Enhancement Electric Vehicles’ Li-Ion Batteries,” IEEE Trans. Industry Applications., vol. 55, no. 1, pp. 840-849, Jan. 2019.
    [37] 黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」,台灣科技大學電機工程博士論文,2012 年 7 月。
    [38] M. M. Gupta, L. Jin, and N. Homma, “Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory,” Wiley-IEEE Press, 2003.

    無法下載圖示 全文公開日期 2025/08/08 (校內網路)
    全文公開日期 2027/08/08 (校外網路)
    全文公開日期 2027/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE