簡易檢索 / 詳目顯示

研究生: 鄭賀名
Ho-Ming Cheng
論文名稱: 依據材料特性參數來建構出多變量線性迴歸模型以預測鋰離子電池的電化學性能表現
Developing Multivariate Linear Regression Models to Predict the Electrochemical Performance of Lithium Ion Batteries Based on Material Property Parameters
指導教授: 朱瑾
Jinn P. Chu
王復民
Fu-Ming Wang
口試委員: 朱瑾
Jinn P. Chu
王復民
Fu-Ming Wang
蘇威年
Wei-Nien Su
劉偉仁
Wei-Ren Liu
蔡丕椿
Pi-Chuen Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 209
中文關鍵詞: 多變量線性迴歸模型假設檢定樣本數計算約束最佳化時間序列分析主成分分析因素分析結構方程模型偏最小平方法灰色預測熵值法組合預測
外文關鍵詞: multivariate linear regression model, hypothesis testing, sample size calculation, constrained optimization, time series analysis, principal component analysis, factor analysis, structural equation modelling, partial least squares, grey model, information entropy, combination forecasting
相關次數: 點閱:377下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 若能在鋰離子電池的活性材料組裝之前能對它的電化學表現作出預測,將能夠減少電池組裝的成本花費與省下充放電實驗所需耗費的時間。所以能夠建立一個基於統計學原理的數學模型來對鋰離子電池中活性材料的電化學性能作準確預測的話,會對電池材料的製作與優化有非常大的幫助。在這份研究中,我們量測了共11種由廠商製備的磷酸鐵鋰LiFePO4/C正極材料粉末的性質,並在其組裝為電池後測試它們的電化學性能。所得到的材料特性參數會透過多變量線性迴歸模型來與電化學表現的評分關聯起來。在第一個研究的部分,我們起先利用X光繞射技術、傅立葉轉換紅外線光譜儀、元素分析儀等量測技術去分別分析這11種磷酸鐵鋰材料的晶體結構、磷酸根離子PO43-官能基的振動情形、包碳含量等的材料特性參數。接下來我們將這11種LiFePO4粉末製作成電極並將其組裝為鈕扣型電池,然後我們將這些電池做了在不同充放電速率時的電容量測試以及做了速率在2C時的一千個充放電迴圈的循環壽命實驗。迴歸模型中的迴歸係數預估值是利用最小平方法去計算的,經過這樣的計算我們能夠把迴歸模型建構起來。我們期望推廣這一套統計學預測工具在材料科學中的應用以幫助未來的科研工作者最佳化他們的目標研究產物。
    第二部分我們進一步依據材料特性參數來求算出能預測於循環伏安掃描量測中所分析出的極化電位的迴歸模型,並且運用小樣本數的「成對t值檢定」的方法來驗證在95 %的信心水準下,能接受預估值與實際值是一致的,接著再使用F分配檢定法來確認兩組數據在統計範圍內能有一樣的資料分散變異程度。第三部分是透過「樣本數計算」的分析來估算出若要透過假設檢定來驗證我們所推導出的迴歸模型的準確性,在滿足設定的信心水準與檢定力的要求條件下所需收集的最少樣本數是多少。第四個主題是以「約束最佳化」的分析方法來解答我們所推導出的迴歸模型能預期的在最佳情況下極化電位的極小值是多少,以及對應於此最好電池性能時的各項材料特性參數數值為何。第五個主題是運用「時間序列分析」的方法來預測正極材料循環壽命的未來趨勢,以幫助電池管理系統準確管控電池的健康狀況,另外還採用了灰色預測來對電容量的衰退建模,並以熵值法求算出權重係數以進行組合預測,以進一步提高預測的品質。第六項研究是套用「主成分分析」的方法,找出變數的合適線性組合以濾除對數據變異而言不重要的變數,幫助我們減少分析數據時所需考慮的預測變量數目並能最大程度地解釋資料的變異。第七項研究是以「因素分析」的研究方法,協助我們從變數中萃取出可能存在而未被觀察到的潛在因素,讓科研人員彙整出主要影響變異的原因並能對資料數據有更深一層的認識。在第八個主題中,「結構方程模型」的建構能夠直觀與圖像化地將預測變數、潛在變數與響應變數之間的統計學關聯給呈現出來,並讓我們能清晰地評估與比較各項變量在迴歸模型中的相對重要性。第九個主題透過「偏最小平方法」的數學技巧,進一步地解決了運用普通最小平方法所求得的迴歸模型有無法處理樣本數量少與其迴歸係數不宜直接相比較等問題的缺陷,同時此方法還有和主成分分析一樣的篩選出重要變數的功能,使得分析更加地全面與深入。在本論文的研究中我們施用了共九項的統計學方法來解析材料特性參數與電化學性能的迴歸預測模型、驗證迴歸模型的準確性、預估電化學表現的發展趨勢、找出迴歸模型所預測的最佳解答、剖析影響數據變異的主要成分等等的資料處理問題,因此我們期望本論文中所介紹的數學分析工具與方法能裨益於科研社群以在未來完成更優異的研究成果。


    Predicting the electrochemical performance of active materials before their assembly in lithium ion batteries would be a path to cutting costs and time for assembling coin cells and running charging and discharging tests. Therefore, it is valuable to establish a statistical model to precisely predict the electrochemical performance of active materials in lithium ion batteries before cell assembly. In this study, we employed 11 different LiFePO4 powders prepared by manufacturers as the cathode active material and measured its properties, and then prepared cathode electrodes and ran electrochemical experiments. The acquired material property parameters and the electrochemical scores were correlated using multivariate linear regression models. We first used XRD, FTIR, and EA techniques to measure the crystal structure, vibration of PO43- functional group, and the carbon content, respectively. Next we made the cathode electrodes using these 11 LiFePO4 products and assembled them into coin cells, we then ran capacity tests at various current rates and cycleability tests at a 2 C current rate for 1,000 cycles. Estimates of the regression coefficients in the regression models were calculated by the least squares method, and thus the regression models were established. We expect to popularize this powerful material science statistical predictive strategy, to allow future researchers to predict performance of products in a cost-effective and timely manner.
    In the second analysis of this study, a regression model for predicting polarization potential in CV measurements of LiFePO4/C cathodes was developed based on several material property parameters. In order to assess that whether the predicted values are about the same with the observed data with a 95 % level of confidence, a paired t-test was employed to compare the means of the 2 populations. Moreover, an F-test was applied to examine the ratio of the variance of the two datasets for confirming that the variables of the 2 populations have about the same expectation of the squared deviations from their means. Sample size calculation technique was adopted for evaluating the required minimum sample amount for achieving the predetermined power and significance level for our hypothesis tests in the third analysis. The 4th topic is to use the constrained optimization method to figure out the lowest anticipated overpotential in the CV tests and the corresponding material property parameters according to the fitted equation we established in part 3. In the 5th subject, cycle life tendencies of cathode materials were simulated based on the time series analysis. Time series analysis is beneficial for battery management system to monitor the battery health precisely, and thus would be helpful for improving the safety of LIB. Grey model was furthur employed to construct the prediction equation for assessing the degradation of the cell capacity during long-term cycling. Moreover, the idea based on information entropy also helps us develope the combination model for forecasting, and thus the precision of the resultant model can be improved even more. In the 6th work, principal component analysis was performed on the variables obtained from XRD measurements of all the samples. The original data would be transformed into uncorrelated principal components, and the unimportant vectors can thus be eliminated. Therefore, the remaining principal components can explain the variance of the original data as much as possible. The 7th topic is to perform the factor analysis on a few predictor variables we selected, as a result we can extract the unobserved latent variables which might exist. In the 8th analysis, we made use of the structure equation modelling to visually present the statistical correlations among the observed variables and the latent factors intuitively. This path analysis skill clearly manifested the relative importance of various variables in the regression model. The partial least squares regression method was performed on our experimental results in the 9th subject, consequently we are able to construct the fitted equation when the sample amount we collected is less than the variables we would like to investigate. While the variables were standardized so the regression coefficients can be compared directly, PLS regression model transforms the predictor variables into principal components as well so the variance of the data can be thoroughly accounted for as possible.
    Within this study, we have utilized 9 statistical analyses to resolve the correlations among the measured experimental data. A number of topics researched in this work include: development of regression equations for forecasting electrochemical performances according to material properties, accuracy verifications of the regression models we established, trend anticipation of the cycle lives of the studied cathode samples, the best battery capability and the associated variable values indicated by the prediction function, and the solutions of the principal components which are able to express the data dispersion as much as possible, etc. We expect these mathematical tools can lead the scientific community to perfect their achievements in the future.

    摘要........................................................................... I Abstract .................................................................... III 誌 謝 ........................................................................ VI 目 錄 ........................................................................ XI 圖 目 錄 .................................................................... XVI 表 目 錄 ..................................................................... XX 符 號 索 引 ............................................................... XXIII 第一章 緒 論 ................................................................... 1 1.1 前言 ...................................................................... 1 1.2 鋰離子電池的實際應用 ........................................................ 6 1.3 鋰離子電池正極材料的發展現況 ................................................ 9 1.4 磷酸鐵鋰正極材料的介紹 ..................................................... 11 1.5 建構數學模型對鋰離子電池的電化學性能進行預測 ................................. 12 1.6 研究動機與目的 ............................................................ 12 第二章 文獻回顧 ............................................................... 16 2.1 磷酸鐵鋰正極材料的材料性質 ................................................. 16 2.2 多變量線性迴歸模型的介紹 ................................................... 18 2.3 電容量衰退趨勢的模型預測方法 ............................................... 19 第三章 實驗方法與儀器設備以及分析軟體 ........................................... 21 3.1 鑑定與分析正極材料特性的儀器與設備 .......................................... 21 3.1.1 同步輻射X光繞射分析實驗站 ................................................ 21 3.1.2 高解析度場發射掃描式電子顯微鏡 ........................................... 22 3.1.3 能量色散X射線能譜儀...................................................... 22 3.1.4 元素分析儀 .............................................................. 23 3.1.5 傅立葉轉換紅外線光譜儀 ................................................... 23 3.1.6 拉曼光譜儀 .............................................................. 24 3.1.7 振實密度儀 .............................................................. 24 3.1.8 固態核磁共振光譜儀 ...................................................... 24 3.1.9 比表面積分析儀 .......................................................... 25 3.1.10 超導量子干涉儀 ......................................................... 26 3.1.11 X射線光電子能譜儀 ...................................................... 26 3.1.12 同步輻射X光吸收能譜實驗站 ............................................... 27 3.2 電極的製備與電池的組裝 ..................................................... 27 3.2.1 將粉體材料製作成電極 ..................................................... 27 3.2.2 鈕扣電池的組裝........................................................... 28 3.3 鈕扣電池的電化學性能量測 ................................................... 28 3.3.1 鋰離子電池充放電測試儀 ................................................... 28 3.3.2 電化學恆電位測試儀 ...................................................... 29 3.4 分析數據用的工具軟體 ....................................................... 29 3.4.1 Microsoft® Excel 2013 .................................................. 29 3.4.2 OriginPro 8.5 .......................................................... 30 3.4.3 IBM® SPSS® Statistics 22 ............................................... 30 3.4.4 IBM® SPSS® Amos 24 ..................................................... 30 3.4.5 ZView® ................................................................. 31 3.4.6 FullProf Suite ......................................................... 31 3.4.7 G*Power 3.1 ............................................................ 31 3.4.8 Lingo 12 ............................................................... 31 3.4.9 ATHENA ................................................................. 32 第四章 統計學的理論與方法 ...................................................... 33 4.1 多變量線性迴歸模型 ........................................................ 33 4.1.1 運用最小平方法去求算迴歸係數 ............................................. 34 4.1.2 計算出95 %的信賴區間以剔除不重要的預測變數 ................................ 35 4.2 成對t值與兩族群變異數相等性的假設檢定 ........................................ 36 4.2.1 假設檢定的介紹 .......................................................... 37 4.2.2 兩群體平均值的成對t值檢驗法 .............................................. 37 4.2.3 成對樣本數據變異數的F檢定法 .............................................. 38 4.3 最小樣本數計算 ............................................................ 39 4.4 最佳化分析................................................................. 40 4.5 時間序列分析 .............................................................. 43 4.5.1 時間序列模型的介紹 ...................................................... 44 4.5.2 灰色預測模型 ............................................................ 47 4.5.3 運用熵值法來將多種預測模型通過加權係數加以組合 ............................. 51 4.6 主成分分析 ................................................................ 52 4.7 因素分析 ................................................................. 55 4.8 結構方程模型 .............................................................. 58 4.9 偏最小平方迴歸法 .......................................................... 60 第五章 實驗與分析的結果和討論 .................................................. 63 5.1 根據材料特性建立能預測電化學性能的迴歸模型 .................................. 63 5.1.1 運用XRD作材料結構的分析 .................................................. 67 5.1.2 運用FTIR技術解析材料的官能基振動特徵 ...................................... 69 5.1.3 運用元素分析儀量測材料中的碳含量 .......................................... 70 5.1.4 倍率性能與循環壽命等電化學性能的量測結果 .................................. 71 5.1.5 運用最小平方法求算出迴歸係數以建立預測方程式 ............................... 75 5.1.6 通過信賴區間的篩選以剔除可忽略的預測變量 .................................. 76 5.1.7 深入的研究與討論 ........................................................ 78 5.2 迴歸模型預測準確性的檢驗 ................................................... 80 5.2.1 假設檢定的概述與在鋰電池方面的應用方向 .................................... 80 5.2.2 材料結構方面的特性參數分析 ............................................... 81 5.2.3 運用EDX量測作材料中的元素計量比分析 ....................................... 81 5.2.4 材料樣品的振實密度量測 ................................................... 85 5.2.5 運用拉曼光譜儀分析包覆碳的石墨化程度 ...................................... 87 5.2.6 固態核磁共振光譜儀的實驗結果 ............................................. 92 5.2.7 運用超導量子干涉儀分析材料的磁學性質 ...................................... 93 5.2.8 電池的循環伏安法掃描結果與參數解析 ........................................ 95 5.2.9 建立能預測過電位的迴歸模型以及實際數值的驗證 ............................... 98 5.2.10 運用成對t值檢驗法進行兩組樣本群體的平均值比較 ............................. 99 5.2.11 以F檢定法比較兩組樣本數據的變異數大小 ................................... 100 5.3 最小樣本數計算 ........................................................... 101 5.3.1 設想樣品電容量的提升為範例來探索樣本數計算的應用 .......................... 101 5.3.2 常態分配檢定 ........................................................... 102 5.3.3 樣本數計算的結果與討論 .................................................. 104 5.4 利用線性規劃的求算軟體找出預測模型的最佳解 ................................. 105 5.4.1 目標函數的設定與變數範圍的語法編輯 ....................................... 106 5.4.2 LINGO軟體所解出的最佳化解答 ............................................. 107 5.5 運用時間序列分析法對正極材料的循環壽命進行預測 .............................. 108 5.5.1 運用ARIMA模型預測樣品A的電容量衰退趨勢 ................................... 109 5.5.2 運用指數平滑法預測樣品C的電容量衰退趨勢 .................................. 111 5.5.3 額外的補充討論 ......................................................... 112 5.5.4 運用灰色模型來分析數據以建立電極循環壽命的預測方程式 ...................... 113 5.5.5 運用熵值法來求算單項預測法的權重係數以建立組合預測模型 ..................... 113 5.6 對與X光繞射相關的材料變數進行主成分分析 .................................... 116 5.6.1 擷取與材料結構特性有關的重要的主成分 ..................................... 117 5.6.2 綜合主成分分析以及樣品的評分排序 ......................................... 119 5.6.3 建立評估電極過電位的主成分迴歸模型 ....................................... 120 5.7 綜合變數的因素分析 ....................................................... 122 5.7.1 因素負荷量的計算以及潛在變數的推論 ....................................... 122 5.8 結構方程模型的建立 ....................................................... 128 5.8.1 AMOS程式的操作與路徑係數的解讀 .......................................... 128 5.9 運用偏最小平方法迴歸來進行小樣本數的預測模型建立 ............................ 131 5.9.1 材料樣品的BET比表面積量測結果 ........................................... 131 5.9.2 運用偏最小平方法處理小樣本數的預測模型建立問題 ............................ 134 5.9.3 偏最小平方迴歸與相關係數的結果比較 ....................................... 136 5.10 材料的X光吸收光譜與電極的交流阻抗分析結果 ................................. 138 5.10.1 X光吸收能譜的數據 ..................................................... 138 5.10.2 交流阻抗頻譜的圖形與等效電路的模擬 ...................................... 140 第六章 結論與展望 ............................................................ 147 參 考 文 獻 ................................................................. 152 附 錄 ....................................................................... 165 FullProf程式碼 .............................................................. 165 口試委員的提問與回答 .......................................................... 169 1. 朱 瑾 老師 ............................................................... 169 2. 王復民 老師 ............................................................... 169 3. 蘇威年 老師 ............................................................... 170 4. 劉偉仁 老師 ............................................................... 172 5. 蔡丕椿 老師 ............................................................... 176 個 人 簡 歷 ................................................................. 183 學 歷 ....................................................................... 183 獲得獎項 .................................................................... 183 著 作 目 錄 ................................................................. 184

    [1] 黃可龍,王兆翔,劉素琴。2010年5月。〝第七章:鋰離子電池的應用與展望。〞鋰離子電池原理與技術,馬振基 校訂,636-672。台北市:五南圖書出版股份有限公司。
    [2] Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach. 2011. “Challenges in the development of advanced Li-ion batteries: a review.” Energy & Environmental Science 4: 3243-3262.
    [3] 廖文明、戴永年、姚耀春、易惠華、熊學。2008年10月。〝4種正極材料對鋰離子電池性能的影響及其發展趨勢。〞材料導報 22 (10):45-50。
    [4] 內田隆裕。2009年3月。〝第六章:二次電池的充電方式及相關注意事項。〞圖解電池入門,王慧娥 譯,192–193。台北縣新店市:世貿出版有限公司。
    [5] Masaki Yoshio,Akiya Kozawa,Ralph J. Brodd,Hideyuki Noguchi。2017年1月。鋰離子電池—科學與技術,蘇金然,汪繼強 譯,1-35。北京:化學工業出版社。
    [6] Li-Xia Yuan, Zhao-Hui Wang, Wu-Xing Zhang, Xian-Luo Hu, Ji-Tao Chen, Yun-Hui Huang and John B. Goodenough. 2011. “Development and challenges of LiFePO4 cathode material for lithium-ion batteries.” Energy Environ. Sci. 4: 269-284.
    [7] M. Stanley Whittingham. 2004. “Lithium Batteries and Cathode Materials.” Chem. Rev. 104: 4271-4301.
    [8] 藤瀧和弘,佐藤祐一。2013年11月。〝第三章:二次電池。〞世界第一簡單電池,陳銘博 譯,劉廣定 審訂,91–101。新北市:世貿出版有限公司。
    [9] M. Armand & J. -M. Tarascon. 7 February 2008. “Building better batteries.” Nature 451: 652-657.
    [10] Yi-Xiao Li, Zheng-Liang Gong, Yong Yang. 6 December 2007. “Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries.” Journal of Power Sources 174 (2): 528–532.
    [11] Ying Shi, Lei Wen, Feng Li, Hui-Ming Cheng. 15 October 2011. “Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries.” Journal of Power Sources 196 (20): 8610–8617.
    [12] Leslie Nemo,林慧珍 譯,一覽世界科技進展。科學人雜誌,2017年10月號。188期:19頁。
    [13] Rotem Marom, S. Francis Amalraj, Nicole Leifer, David Jacob and Doron Aurbach. 2011. “A review of advanced and practical lithium battery materials.” J. Mater. Chem. 21: 9938-9954.
    [14] Doron Aurbach, Boris Markovsky, Gregory Salitra, Elena Markevich, Yossi Talyossef, Maxim Koltypin, Linda Nazar, Brian Ellis, Daniella Kovacheva. 2007. “Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries.” Journal of Power Sources 165: 491-499.
    [15] Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, H. Q. Wu. May 2007. “A novel carbon-coated LiCoO2 as cathode material for lithium ion battery.” Electrochemistry Communications 9 (5): 1228–1232.
    [16] Chun-Yun Lin and Chia-Chin Chang. October 2012. “Quaternary-ammonium Based Ionic Liquid Mixed with Organic Solvent Electrolyte System.” Journal of the Chinese Chemical Society 59 (10): 1244–1249.
    [17] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. 1997. “Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries.” J. Electrochem. Soc. 144 (4): 1188-1194.
    [18] K. Zaghib, A. Mauger, C. M. Julien. March 2012. “Overview of olivines in lithium batteries for green transportation and energy storage.” Journal of Solid State Electrochemistry 16 (3): 835-845.
    [19] Joel O. Herrera, Héctor Camacho-Montes, Luis E. Fuentes, Lorena Álvarez-Contreras. 2015. “LiMnPO4: Review on Synthesis and Electrochemical Properties.” Journal of Materials Science and Chemical Engineering 3: 54-64.
    [20] Xuewu Liu, Tiezhu Feng, Shuhua Chen, Hao Wei. 2016. “Effects of Different Templates on Electrochemical Performance of LiFePO4/C Prepared by Supercritical Hydrothermal Method.” Int. J. Electrochem. Sci. 11: 2276–2283.
    [21] Chaochao Huang, Desheng Ai, Li Wang, Xiangming He. 2016. “LiFePO4 Crystal Growth during Co-precipitation.” Int. J. Electrochem. Sci. 11: 754–762.
    [22] Zhihua Li, Duanming Zhang, Fengxia Yang. 2009. “Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material.” J Mater Sci 44: 2435–2443.
    [23] Deyu Wang, Xiaodong Wu, Zhaoxiang Wang, Liquan Chen. 10 January 2005. “Cracking causing cyclic instability of LiFePO4 cathode material.” Journal of Power Sources 140 (1): 125–128.
    [24] Yi-Jie Gua, Cui-Song Zenga, Hui-Kang Wub, Hong-Zhi Cuia, Xiao-Wen Huanga, Xiu-Bo Liuc, Cui-Ling Wanga, Zhi-Ning Yanga, Hong Liua. October 2007. “Enhanced cycling performance and high energy density of LiFePO4 based lithium ion batteries.” Materials Letters 61 (25): 4700–4702.
    [25] Ruiyuan Tian, Guangyao Liu, Haiqiang Liu, Lina Zhang, Xiaohua Gu, Yanjun Guo, Hanfu Wang, Lianfeng Sun and Weiguo Chu. 2015. “Very high power and superior rate capability LiFePO4 nanorods hydrothermally synthesized using tetraglycol as surfactant.” RSC Adv. 5 (3): 1859-1866.
    [26] Nan Zhou, Evan Uchaker, Yan-Yi Liu, Su-Qin Liu, You-Nian Liu, and Guo-Zhong Cao. 2012. “Effect of Carbon Content on Electrochemical Performance of LiFePO4/C Thin Film Cathodes.” Int. J. Electrochem. Sci. 7: 12633–12645.
    [27] Chunli Gong, Fangli Deng, Chi-Pong Tsui, Zhigang Xue, Yun Sheng Ye, Chak-Yin Tang, Xingping Zhoua and Xiaolin Xie. 07 December 2014. “PANI–PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries.” J. Mater. Chem. A 2 (45): 19315-19323.
    [28] Zhouguang Lu, Hailong Chen, Rosa Robert, Ben Y. X. Zhu, Jianqiu Deng, Lijun Wu, C. Y. Chung, and Clare P. Grey. 2011. “Citric Acid- and Ammonium-Mediated Morphological Transformations of Olivine LiFePO4 Particles.” Chem. Mater. 23: 2848–2859.
    [29] Yanqiang Wang, Jiulin Wang, Jun Yang, and Yanna Nuli. October 2006. “High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4•4H2O.” Adv. Funct. Mater. 16 (16): 2135–2140.
    [30] Andrew Ritchie, Wilmont Howard. 2006. “Recent developments and likely advances in lithium-ion batteries.” Journal of Power Sources 162: 809-812.
    [31] Yonggao Xia, Masaki Yoshio, Hideyuki Noguchi. 2006. “Improved electrochemical performance of LiFePO4 by increasing its specific surface area.” Electrochimica Acta 52: 240–245.
    [32] Shrikant C. Nagpure, Bharat Bhushan, S. S. Babu. 2012. “Raman and NMR studies of aged LiFePO4 cathode.” Applied Surface Science 259: 49–54.
    [33] Yun-Hui Huang, and John B. Goodenough. 2008. “High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers.” Chem. Mater. 20: 7237–7241.
    [34] Jiying Lia, Wenlong Yaob, Steve Martinb, David Vaknin. 30 October 2008. “Lithium ion conductivity in single crystal LiFePO4.” Solid State Ionics 179 (35–36): 2016–2019.
    [35] SUNG-YOON CHUNG, JASON T. BLOKING AND YET-MING CHIANG. 2002. “Electronically conductive phospho-olivines as lithium storage electrodes.” Nature Materials 1: 123-128.
    [36] Miaomiao Zhang, Rui Liu, Fan Feng, Shaojie Liu, and Qiang Shen. 2015. “Etching Preparation of (010)-Defective LiFePO4 Platelets to Visualize the One-Dimensional Migration of Li+ Ions.” J. Phys. Chem. C 119: 12149−12156.
    [37] Jiali Liu, Zhangzhi Wang, Guohua Zhang, Yun Liu, Aishui Yu. 2013. “Size-Controlled Synthesis of LiFePO4/C Composites as Cathode Materials for Lithium Ion Batteries.” Int. J. Electrochem. Sci. 8: 2378–2387.
    [38] Yung-Da Choa, George Ting-Kuo Feya, Hsien-Ming Kao. 1 April 2009. “The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes.” Journal of Power Sources 189 (1): 256–262.
    [39] O. V. Levin, S. N. Eliseeva, E. V. Alekseeva, E. G. Tolstopjatova, V. V. Kondratiev. 2015. “Composite LiFePO4/poly-3,4-ethylenedioxythiophene Cathode for Lithium-Ion Batteries with Low Content of NonElectroactive Components.” Int. J. Electrochem. Sci. 10: 8175–8189.
    [40] Ya-Wen Chen, Jenn-Shing Chen. 2012. “A Study of Electrochemical Performance of LiFePO4/C Composites Doped with Na and V.” Int. J. Electrochem. Sci. 7: 8128–8139.
    [41] Hong-Chang Wong, James R. Carey, Jenn-Shing Chen. 2010. “Physical and Electrochemical Properties of LiFePO4/C Composite Cathode Prepared From Aromatic Diketone-Containing Precursors.” Int. J. Electrochem. Sci. 5: 1090–1102.
    [42] G. Rousse, J. Rodriguez-Carvajal, S. Patoux and C. Masquelier. 2003. “Magnetic Structures of the Triphylite LiFePO4 and of Its Delithiated Form FePO4.” Chem. Mater. 15: 4082-4090.
    [43] Jiajun Wang and Xueliang Sun. 01 April 2015. “Olivine LiFePO4: the remaining challenges for future energy storage.” Energy Environ. Sci. 8 (4): 1110-1138.
    [44] Xiao-Zhen Liao, Zi-Feng Ma, Yu-Shi He, Xiao-Ming Zhang, Liang Wang, and Yi Jiang. 2005. “Electrochemical Behaviour of LiFePO4/C Cathode Material for Rechargeable Lithium Batteries.” Journal of The Electrochemical Society 152 (10): A1969-A1973.
    [45] F. Croce, A. D’ Epifanio, J. Hassoun, A. Deptula, T. Olczac, and B. Scrosati. 2002. “A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode.” Electrochemical and Solid-State Letters 5 (3): A47-A50.
    [46] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, and J. Jamnik. 2005. “Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4/C Composites.” Journal of The Electrochemical Society 152 (3): A607-A610.
    [47] H. Huang, S.-C. Yin, and L. F. Nazar. 2001. “Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates.” Electrochemical and Solid-State Letters 4 (10): A170-A172.
    [48] A. S. Andersson, J. O. Thomas, B. Kalska, and L. Häggström. 2000. “Thermal Stability of LiFePO4 – Based Cathodes Articles.” Electrochem. Solid-State Lett. 3 (2): 66-68.
    [49] N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, and M. Armand. 1999. “Abstract 127.” The Electrochemical Society and The Electrochemical Society of Japan Meeting Abstracts, Honolulu, Hawaii, 99-2, October 17-22.
    [50] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand. 2000. “Abstract 166.” International Meeting on Lithium Batteries, Como, Italy, May 28-June 2.
    [51] N. Ravet, S. Besner, M. Simoneau, A. Vallée, M. Armand, Hydro-Québec. 1999. Canadian patent application 2,270,771, filed April 30.
    [52] Richard A. Johnson, and Dean W. Wichern. 2007. “Chapter 7: Multivariate Linear Regression Model.” Applied Multivariate Statistical Analysis, 6th edition, 360-374. Upper Saddle River (NJ): Pearson Prentice Hall.
    [53] Bommier C., Luo W., Gao W. Y., Greaney A., Ma S., & Ji X.. September 2014. “Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements.” Carbon 76: 165-174.
    [54] Wei He, Nicholas Williard, Michael Osterman, Michael Pecht. 1 December 2011. “Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method.” Journal of Power Sources 196 (23): 10314-10321.
    [55] Ching-Shieh Hsieh, Hsin-Ya Huang, Hui-Ling Fang & Wein-Duo Yang. 2008. “Applying experimental statistical method for the preparation of nanometric-sized LiNi0.8Co0.2O2 powders as a cathode material for lithium batteries.” Eighth International Conference on Intelligent Systems Design and Applications 1: 485-488.
    [56] Zhixu Han, Diana Askhatova, The Nam Long Doan, Tuan K.A. Hoang, P. Chen. 2015. “Experimental and mathematical studies on cycle life of rechargeable hybrid aqueous batteries.” Journal of Power Sources 279: 238-245.
    [57] Min Ye, Hui Guo, Rui Xiong, Ruixin Yang. 2016. “Model-based State-of-charge Estimation Approach of the Lithium-ion Battery Using and Improved Adaptive Particle Filter.” Energy Procedia 103: 394-399.
    [58] Bin Wu, Wei Lu. 2016. “Mechanical-Electrochemical Modelling of Agglomerate Particles in Lithium-Ion Battery Electrodes.” Journal of The Electrochemical Society 163 (14): A3131-A3139.
    [59] Jingliang Zhang, Jay Lee. 2011. “A review on prognostics and health monitoring of Li-ion battery.” Journal of Power Sources 196: 6007–6014.
    [60] Gang Yu, Luying Sheng and Mimi Guo. 2013. “Degradation Model Prediction for Battery of Electric Vehicle based on Hidden Markov Model.” Applied Mechanics and Materials 378: 492-495.
    [61] Dong Zhou, Long Xue, Yijia Song and Jiayu Chen. 2017. “On-Line Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Optimized Gray Model GM(1,1).” Batteries 3 (3): 21-1 – 21-17.
    [62] 苗敬毅,張玲。2014年9月。「第一章:預測概述」管理預測技術與方法,1-24。北京:清華大學出版社。
    [63] Zahilia Cabán-Huertas, Omar Ayyad, Deepak P. Dubal & Pedro Gómez-Romero. 2016. “Aqueous synthesis of LiFePO4 with Fractal Granularity.” Scientific Reports 6: 27024-27032.
    [64] Rakesh Saroha and Amrish K Panwar. 2017. “Effect of in situ pyrolysis of acetylene (C2H2) gas as a carbon source on the electrochemical performance of LiFePO4 for rechargeable lithium-ion batteries.” Journal of Physics D: Applied Physics 50 (25): 255501-255512.
    [65] Ewen Smith and Geoffrey Dent. 2005. “Chapter 1: Introduction, Basic Theory and Principles.” Modern Raman Spectroscopy–A Practical Approach, 1-2. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd.
    [66] 陳振中。2006年12月。〝固態核磁共振光譜學簡介。〞科儀新知 第二十八卷 (第三期):42-49。
    [67] 俎棟林,高家紅。2014年9月。〝前言。〞核磁共振成像—物理原理和方法,1-3。北京:北京大學出版社。
    [68] 俎棟林,高家紅。2014年9月。核磁共振成像—生理參數測量原理和醫學應用,1-202。北京:北京大學出版社。
    [69] 李雅明。1995年5月。〝第九章:磁學性質。〞固態電子學,489-490。台北市:全華科技圖書股份有限公司。
    [70] 林明憲。2016年。〝高能鋰離子電池電極材料結構衰退機制分析及電化學效能提升之研究。〞博士論文,第三章,58-59,國立台灣科技大學。
    [71] 胡啟章。2011年2月。〝第六章:電位控制法。〞電化學原理與方法,第二版,101-117。台北市:五南圖書出版股份有限公司。
    [72] 陳寬裕,王正華。2011年10月。〝序。〞論文統計分析實務:SPSS與AMOS的運用,第二版,001頁。台北市:五南圖書出版股份有限公司。
    [73] 魏文欽。2008年2月。〝第一章:AMOS。〞資料分析技巧:結構方程模式 AMOS LISREL SAS之應用,1-1頁。台北市:雙葉書廊有限公司。
    [74] A. Elouahli, E. Gourri, B. El ouatli, R. Chourak, M. Ezzahmouly, M. Jamil, H. Khallok, Z. Hatim. 2016. “Characterization of Tricalcium Phosphate Powder Prepared by Rapid Reaction Between Ca(OH)2 and H3PO4.” International Journal of Scientific & Engineering Research 7 (8) 764-769.
    [75] S T Dadami, S Matteppanavar, I Shivaraja, S Rayaprol, B Angadi. 2016. “Structural, Magnetic and Dielectric Studies of Pb0.9Bi0.1Fe0.55Nb0.45O3 Multiferroic Solid solution.” IOP Conference Series: Materials Science and Engineering 149: 012163-012169.
    [76] 沈明來。1997年2月。〝第一章:基本統計學概念。〞實用無母數統計學與計數資料分析,1-37頁。台北:眾光文化事業有限公司。
    [77] 中原保裕,中原さとみ。2015年2月。圖解入門藥理學,大放譯彩翻譯社 譯,8-11。台北縣:三悅文化圖書事業有限公司。
    [78] Joan Fisher Box. Feb 1987. “Guinness, Gosset, Fisher, and Small Samples.” Statistical Science 2 (1): 45-52.
    [79] Hélio Amante Miot. 2011. “Sample size in clinical and experimental trials.” J. Vasc. Bras. 10 (4): 275-278.
    [80] 余桂霖。2013年10月。〝第一章:導論。〞 時間序列分析,1-26頁。台北市:五南圖書出版股份有限公司。
    [81] 苗敬毅,張玲。 2014年 9月。「第八章:灰色系統預測」 管理預測技術與方法 ,239-254。北京:清華大學出版社。
    [82] 苗敬毅,張玲。2014年9月。「第九章:組合預測」 管理預測技術與方法,288-291。北京:清華大學出版社。
    [83] Richard A. Johnson, and Dean W. Wichern. 2007. “Chapter 9: FACTOR ANALYSIS AND INFERENCE FOR STRUCTURED COVARIANCE MATRICES.” Applied Multivariate Statistical Analysis, 6th edition, 481-526. Upper Saddle River (NJ): Pearson Prentice Hall.
    [84] M. Casas-Cabanas, J. Rodríguez-Carvajal, J. Canales-Vázquez, Y. Laligant, P. Lacorre, M.R. Palacín. 2007. “Microstructural characterization of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches.” Journal of Power Sources 174 (2): 414-420.
    [85] In Kyu Lee, Sam Jin Kim, and Chul Sung Kim. APRIL 2012. “Magnetic Properties of Phospho-Olivine Li(Fe1-xMnx)PO4 Investigated With Mössbauer Spectroscopy.” IEEE TRANSACTIONS ON MAGNETICS 48 (4): 1553-1555.
    [86] Han Chen, Shao-Chang Han, Wen-Zhi Yu, Hong-Zhi Bo, Chang-Ling Fan and Zhong-Yu Xu. December 2006. “Preparation and electrochemical properties of LiFePO4/C composite cathodes for lithium-ion batteries.” Bull. Mater. Sci. 29 (7): 689-692.
    [87] Brian H. Toby. March 2006. “R factors in Rietveld analysis: How good is good enough?” Powder Diffraction 21 (1): 67-70.
    [88] L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louёr and P. Scardi. 1999. “Rietveld refinement guidelines.” J. Appl. Cryst. 32: 36-50.
    [89] Vikash Kumar, Swati Kumari, Pawan Kumar, Manoranjan Kar, Lawrence Kumar. 2015. “Structural Analysis By Rietveld Method And Its Correlation With Optical Properties Of Nanaocrystalline Zinc Oxide.” Adv. Mater. Lett. 6 (2): 139-147.
    [90] Hong Liu, Ling-Bin Kong, Peng Zhang, Jing Du, Xiao-Ming Li, Yong-Chun Luo, Long Kang. January 2014. “A facile hydrothermal method to prepare LiFePO4/C submicron rod with core–shell structure.” Ionics 20 (1): 15-21.
    [91] Kuei-Feng Hsu, Shao-Kang Hu, Chinh-Hsiang Chen, Ming-Yao Cheng, Sun-Yuan Tsay, Tse-Chuan Chou, Hwo-Shuenn Sheu, Jyh-Fu Lee, Bing-Joe Hwang. 2009. “Formation mechanism of LiFePO4/C composite powders investigated by X-ray absorption spectroscopy.” Journal of Power Sources 192: 660–667.
    [92] Binbin Guo, Hongcheng Ruan, Cheng Zheng, Hailong Fei & Mingdeng Wei. 2013. “Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries.” Scientific Reports 3: 2788-2793.
    [93] Kaoru Dokko, Shohei Koizumi, Hiroyuki Nakano and Kiyoshi Kanamura. 2007. “Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K.” J. Mater. Chem. 17: 4803–4810.
    [94] Allen W. Burton, Kenneth Ong, Thomas Rea, Ignatius Y. Chan. 1 January 2009. “On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems.” Microporous and Mesoporous Materials 117 (1–2): Pages 75–90.
    [95] Ray L. Frost, Ricardo Scholz, Andrés López, Yunfei Xi. 2014. “A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++Mg2Al2(PO4)4(OH)2•8(H2O).” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 124: 243–248.
    [96] Ray L. Frost, Matt L. Weier, Peter A. Williams, Peter Leverett and J. Theo Kloprogge. 2007. “Raman spectroscopy of the sampleite group of minerals.” J. Raman Spectrosc. 38: 574–583.
    [97] 苗敬毅,張玲。2014年9月。「第四章:迴歸預測基礎」 管理預測技術與方法,141-149。北京:清華大學出版社。
    [98] Riguo Mei, Xiaorui Song, Yanfeng Yang, Zhenguo An and Jingjie Zhang. 2014. “Plate-like LiFePO4 crystallite with preferential growth of (010) lattice plane for high performance Li-ion batteries.” RSC Adv. 4: 5746-5752.
    [99] Byoungwoo Kang & Gerbrand Ceder. 12 March 2009. “Battery materials for ultrafast charging and discharging.” Nature 458: 190-193.
    [100] Lei Yao, Yan Wang, Jinjua Wu, Mingwu Xiang, Jianlong Li, Boya Wang, Yun Zhang, Hao Wu, Heng Liu. 2017. “Facile Synthesis of LiFePO4/C with High Tap-density as Cathode for High Performance Lithium Ion Batteries” International Journal of Electrochemical Science 12: 206-217.
    [101] Tommi Kaplas and Yuri Svirko. 2012. “Direct deposition of semitransparent conducting pyrolytic carbon films.” Journal of Nanophotonics 6: 061703-1 - 061703-7.
    [102] Andrea C. Ferrari. July 2007. “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects.” Solid State Communications 143 (1–2): 47–57.
    [103] Yan Wang, Daniel C. Alsmeyer, and Richard L. McCreery. 1990. “Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra.” Chem. Mater. 2: 557-563.
    [104] Michael C. Tucker, Marca M. Doeff, Thomas J. Richardson, Rita Fiñones, Jeffrey A. Reimer and Elton J. Cairns. 2002. “7Li and 31P Magic Angle Spinning Nuclear Magnetic Resonance of LiFePO4-Type Materials.” Electrochem. Solid-State Lett. 5 (5): A95-A98.
    [105] Jordi Cabana, Junichi Shirakawa, Guoying Chen, Thomas J. Richardson, and Clare P. Grey. 2010. “MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System.” Chem. Mater. 22: 1249-1262.
    [106] Gregor Mali, Mojca Rangus, Chutchamon Sirisopanaporn, Robert Dominko. 2012. “Understanding 6Li MAS NMR spectra of Li2MSiO4 materials (M = Mn, Fe, Zn).” Solid State Nuclear Magnetic Resonance 42: 33-41.
    [107] Christian M. Julien, Karim Zaghib, Alain Mauger, Henri Groult. 2012. “Enhanced Electrochemical Properties of LiFePO4 as Positive Electrode of Li-Ion Batteries for HEV Application.” Advances in Chemical Engineering and Science 2: 321-329.
    [108] Vincent Jourdain, Edward T. Simpson, Matthieu Paillet, Takeshi Kasama, Rafal E. Dunin-Borkowski, Philippe Poncharal, Ahmed Zahab, Annick Loiseau, John Robertson, and Patrick Bernier. 2006. “Periodic Inclusion of Room-Temperature-Ferromagnetic Metal Phosphide Nanoparticles in Carbon Nanotubes.” J. Phys. Chem. B 110 (20): 9759-9763.
    [109] Xiu Ming Liu, John Shaw, Jian Zhong Jiang, Jan Bloemendal, Paul Hesse, Tim Rolph, Xue Gang Mao. August 2010. “Analysis on variety and characteristics of maghemite.” Science China Earth Sciences 53 (8): 1153-1162.
    [110] V. Drozd, G. Q. Liu, R. S. Liu, H. T. Kuo, C. H. Shen, D. S. Shy, X. K. Xing. 2009. “Synthesis, electrochemical properties, and characterization of LiFePO4/C composite by a two-source method.” Journal of Alloys and Compounds 487: 58-63.
    [111] Jiying Li, Vasile O. Garlea, Jerel L. Zarestky, and David Vaknin. 2006. “Spin-waves in antiferromagnetic single-crystal LiFePO4.” PHYSICAL REVIEW B 73: 024410-1 – 024410-6.
    [112] R. S. Nicholson, Irving Shain. 1st April 1964. “Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.” Analytical Chemistry 36 (4): 706-723.
    [113] Omolola E. Fayemi, Abolanle S. Adekunle, Eno E. Ebenso. 2017. “Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode.” Sensing and Bio-Sensing Research 13: 17–27.
    [114] Xu Gui-Gui, Wu Jing, Chen Zhi-Gao, Lin Ying-Bin, and Huang Zhi-Gao. 2012. “Effect of C doping on the structural and electronic properties of LiFePO4: A first-principles investigation.” Chin. Phys. B 21 (9): 097401-1-097401-7.
    [115] 黃文璋。民國95年12月。「統計裡的信賴。」 數學傳播 30卷(4期):48-61頁。
    [116] Xingcheng Xiao, Peng Lu, Dongjoon Ahn. 2011. “Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries.” Adv. Mater. 23 (34): 3911-3915.
    [117] Leah A. Riley, Andrew S. Cavanagh, Steven M. George, Yoon Seok Jung, Yanfa Yan, Se-Hee Lee and Anne C Dillon. 2010. “Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials.” ChemPhysChem 11 (10): 2124-2130.
    [118] Leah A. Riley, Sky Van Atta, Andrew S. Cavanagh, Yanfa Yan, Steven M. George, Ping Liu, Anne C. Dillon, Se-Hee Lee. 2011. “Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material.” Journal of Power Sources 196 (6): 3317-3324.
    [119] Dongsheng Guan & Ying Wang. 2013. “Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries.” Ionics 19: 1–8.
    [120] Ho-Ming Cheng, Fu-Ming Wang, Jinn P. Chu, Raman Santhanam, John Rick, and Shen-Chuan Lo. 2012. “Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes.” J. Phys. Chem. C 116: 7629–7637.
    [121] Meng-Lun Lee, Chung-Yi Su, Yu-Hung Lin, Shih-Chieh Liao, Jin-Ming Chen, Tsong-Pyng Perng, Jien-Wei Yeh, Han C. Shih. 2013. “Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries.” Journal of Power Sources 244: 410-416.
    [122] Dongsheng Guan, Judith A. Jeevarajan and Ying Wang. 2011. “Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings.” Nanoscale 3: 1465–1469.
    [123] Isaac D. Scott, Yoon Seok Jung, Andrew S. Cavanagh, Yanfa Yan, Anne C. Dillon, Steven M. George, and Se-Hee Lee. 2011. “Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications.” Nano Lett 11 (2): 414-418.
    [124] Richard A. Johnson, and Dean W. Wichern. 2007. “Chapter 8: Principal Components.” Applied Multivariate Statistical Analysis, 6th edition, 455. Upper Saddle River (NJ): Pearson Prentice Hall.
    [125] 楊仁仁,李亭儀,黃正一。2011年。「高爾夫課程滿意度量表編制之研究。」高院學報 第十七卷 (第二期):第71-77頁。
    [126] Richard P. Bagozzi, Youjae Yi. March 1988. “On the evaluation of structural equation models.” Journal of the Academy of Marketing Science 16 (1): 74–94.
    [127] A. F. Orliukas, K. -Z. Fung, V. Venckutė, V. Kazlauskienė, J. Miškinis, A. Dindune, Z. Kanepe, J. Ronis, A. Maneikis, T. Šalkus, and A. Kežionis. 2014. “SEM/EDX, XPS, AND IMPEDANCE SPECTROSCOPY OF LiFePO4 AND LiFePO4/C CERAMICS.” Lithuanian Journal of Physics 54 (2): 106-113.
    [128] A. Deb, U. Bergmann, E.J. Cairns, S.P. Cramer. 2004. “Structural Investigations of LiFePO4 Electrodes by Fe X-ray Absorption Spectroscopy.” J. Phys. Chem. B 108: 7046-7051.
    [129] Aniruddha Deba, Uwe Bergmannb, S. P. Cramer, Elton J. Cairns. 2005. “Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy.” Electrochimica Acta 50: 5200–5207.
    [130] R. Scipioni, P. S. Jørgensen, D. T. Ngo, S. B. Simonsen, J. Hjelm, P. Norby, and S. H. Jensen. 2015. “Low-voltage FIB/SEM Tomography for 3D Microstructure Evolution of LiFePO4/C Electrode.” ECS Transactions 69 (18): 71-80.
    [131] Xinlu Li, Hao Wang, Hongfang Song, Hongyi Li, Jiamu Huang, Seong-ho Yoon, Feiyu Kang. 2012. “In-situ Preparation and Electrochemical Performance of an Urchin-like Carbon Nanofibers@LiFePO4 Hybrid.” Int. J. Electrochem. Sci. 7: 4397-4404.
    [132] Haiyan Gao, Zhe Hu, Kai Zhang, Fangyi Cheng and Jun Chen. 2013. “Intergrown Li2FeSiO4•LiFePO4–C nanocomposites as high-capacity cathode materials for lithium-ion batteries.” Chem. Commun. 49: 3040-3042.
    [133] Seung Ho Yu, ChangKyoo Park, Ho Jang, Chee Burm Shin, and Won Il Cho. 2011. “Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials.” Bull. Korean Chem. Soc. 32 (3): 852-856.
    [134] Juan Bisquert, Vyacheslav S. Vikhrenko. 2002. “Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes.” Electrochimica Acta 47: 3977-3988.
    [135] S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma. 1 December 2010. “Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries.” Electrochimica Acta 55 (28): 8482-8489.

    QR CODE