簡易檢索 / 詳目顯示

研究生: 吳昕諭
Sin-Yu Wu
論文名稱: 基於混合儲能系統改善無人機續航力
Improving the Endurance of Drone Based on Hybrid Energy Storage System
指導教授: 林長華
Chang-Hua Lin
口試委員: 黃仲欽
Jonq-Chin Hwang
陳亮光
Liang-Kuang Chen
白凱仁
Kai-Jun Pai
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 無人機無人機續航力鋰離子電池鋰離子電容混合儲能系統
外文關鍵詞: Drone, Drone endurance, Li-ion battery, Li-ion capacitor, Hybrid Energy Storage System (HESS)
相關次數: 點閱:257下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製延長無人機續航力之混合儲能系統,透過雙向轉換器,搭配鋰離子電池與鋰離子電容,以實現超級電容半主動式混合儲能系統;其次,所提之控制策略與演算法,透過混合儲能系統提高電池使用率;再者,將所提之控制策略與演算法,實現於所建構之混合儲能系統,並且透過四階段進行驗證,其一,使用模擬軟體MATLAB進行模擬,以此方式初步驗證想法之可行性;其二,使用電子負載模擬不同之抽載情境,以此測試混合儲能系統、控制策略與演算法;其三,提出用於電源轉換器之動態補償;最後,使用無人機進行實測,藉此測試實際飛行情況下,所提之混合儲能系統、控制策略與演算法,對無人機續航力之影響;透過此四階段之模擬結果,證明本文所提之控制策略與演算法之有效性。


    This thesis is to develop a hybrid energy storage system (HESS) for drones. The proposed HESS focuses on drones' flight duration. The system uses lithium-ion batteries and lithium-ion capacitors to realize a semi-active HESS. With the help of a bidirectional converter, the lithium-ion capacitors can improve battery utilization by the control strategy and algorithm. The proposed control strategy and algorithm are applied in the proposed HESS and verified in four stages:
    First, this thesis simulates the proposed system with the MATLAB software to ascertain the idea's feasibility preliminarily. Second, the dc electronic load is utilized to realize the different load extraction scenarios so as to verify the proposed HESS, control strategies, and algorithms. Thirdly, a dynamic compensation for the bidirectional converter is proposed to improve the drones' flight duration further. Finally, the implemented system is tested under actual flight conditions to verify the impact of the proposed HESS, control strategy, and algorithm on the duration of the drone. The results mentioned above prove the effectiveness of the HESS, control strategy, and algorithm proposed in this thesis.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 9 第二章 混合儲能系統之技術簡介 10 2.1 常見之電池介紹 10 2.2 鋰離子聚合物電池特性 12 2.3 鋰離子電容器特性 14 2.4 無人機之負載特性 17 2.5 採用之混合動力系統分析 19 2.5.1 系統架構說明 19 2.5.2 系統工作模式分析 20 第三章 數位控制器與週邊電路設計 28 3.1 數位控制器之必要性 28 3.2 數位控制器STM32G474CET6之簡介 29 3.3 數位控制器與系統元件之連結 32 3.3.1 數位控制器與系統元件之架構圖 32 3.3.2 電流回授之設計與實現 33 3.3.3 電壓回授之設計與實現 35 3.3.4 自舉電路之設計與實現 36 3.4 無線通訊 39 3.4.1 無線通訊技術之介紹 39 3.4.2 無線通訊之數據校驗程序 41 3.5 數位控制器之控制策略及演算法 43 3.5.1 系統方塊圖與控制策略 43 3.5.2 增量型PID控制器 46 3.5.3 電池電壓與電流之關係 50 3.5.4 所提演算法 52 3.5.5 電源轉換器之動態補償 54 第四章 能量管理策略之設計 62 4.1 系統規格選用 62 4.2 系統建模 63 4.2.1 鋰離子聚合物電池模型 63 4.2.2 鋰離子電容器模型 66 4.2.3 能量管理策略 69 4.3 系統模擬結果 71 第五章 系統實測與驗證 76 5.1 測試環境簡介 76 5.2 實測結果與驗證 78 第六章 結論與未來展望 92 6.1 結論 92 6.2 未來展望 93 參考文獻 94

    [1] "Changkong 1 [CK-1] Drone Series." https://www.globalsecurity.org/military/world/china/ck-1.htm (accessed.
    [2] "RQ-4 Global Hawk." https://www.globalsecurity.org/military/world/japan/rq-4.htm (accessed.
    [3] "QH-50 Drone Anti-Submarine Helicopter (DASH)." https://www.globalsecurity.org/military/systems/aircraft/qh-50.htm (accessed.
    [4] M. S. Islam, I. Husain, and R. Mikail, "Slotless lightweight motor for drone applications," in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 1-5 Oct. 2017 2017, pp. 5041-5048, doi: 10.1109/ECCE.2017.8096851.
    [5] B. Saha, C. C. Quach, and K. F. Goebel, "Exploring the model design space for battery health management," in Conference of the Prognostics and Health Management, 2011, no. ARC-E-DAA-TN4023.
    [6] A. N et al., "Design and analysis of a tail sitter (VTOL) UAV composite wing," Materials Today: Proceedings, vol. 56, pp. 1604-1613, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.matpr.2022.03.231.
    [7] P. Anjani Devi, C. Indira priyadarsini, and C. Avvari, "Design of folded wing mechanism for Unmanned Aerial Vehicle (UAV)," Materials Today: Proceedings, 2022/05/06/ 2022, doi: https://doi.org/10.1016/j.matpr.2022.04.660.
    [8] T. Phiboon, A. Ariyarit, M. Kanazaki, Y. Kishi, S. Bureerat, and W. Sae-Tang, "Multi-additional Sampling Multi-objective Efficient Global Optimization applied to UAVs Airfoil Design Problem," in 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 19-22 May 2021 2021, pp. 896-899, doi: 10.1109/ECTI-CON51831.2021.9454945.
    [9] Z. J. Chen, K. A. Stol, and P. J. Richards, "Preliminary design of multirotor UAVs with tilted-rotors for improved disturbance rejection capability," Aerospace Science and Technology, vol. 92, pp. 635-643, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.ast.2019.06.038.
    [10] S. G. Chalk and J. F. Miller, "Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems," Journal of Power Sources, vol. 159, no. 1, pp. 73-80, 2006/09/13/ 2006, doi: https://doi.org/10.1016/j.jpowsour.2006.04.058.
    [11] D.-H. Kim et al., "Toward Fast Operation of Lithium Batteries: Ion Activity as the Factor To Determine the Concentration Polarization," ACS Energy Letters, vol. 4, no. 6, pp. 1265-1270, 2019/06/14 2019, doi: 10.1021/acsenergylett.9b00724.
    [12] M. A. Hannan, F. Azidin, and A. Mohamed, "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, vol. 29, pp. 135-150, 2014.
    [13] W. Jing, C. H. Lai, W. Wong, and M. L. D. Wong, "Battery-Supercapacitor Hybrid Energy Storage System in Standalone DC Microgrids: A Review," IET Renewable Power Generation, vol. 11, 11/07 2016, doi: 10.1049/iet-rpg.2016.0500.
    [14] A. Khaligh and Z. Li, "Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art," IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806-2814, 2010, doi: 10.1109/TVT.2010.2047877.
    [15] T. Ma, H. Yang, and L. Lu, "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, vol. 153, pp. 56-62, 2015/09/01/ 2015, doi: https://doi.org/10.1016/j.apenergy.2014.12.008.
    [16] J. P. Zheng, T. R. Jow, and M. S. Ding, "Hybrid power sources for pulsed current applications," IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 1, pp. 288-292, 2001, doi: 10.1109/7.913688.
    [17] N. Omar, J. Van Mierlo, B. Verbrugge, and P. Van den Bossche, "Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications," Electrochimica Acta, vol. 55, no. 25, pp. 7524-7531, 2010/10/30/ 2010, doi: https://doi.org/10.1016/j.electacta.2010.03.039.
    [18] B. Wang, J. Xu, R. J. Wai, and B. Cao, "Adaptive Sliding-Mode With Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1404-1414, 2017, doi: 10.1109/TIE.2016.2618778.
    [19] Z. Song et al., "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, vol. 135, pp. 212-224, 2014/12/15/ 2014, doi: https://doi.org/10.1016/j.apenergy.2014.06.087.
    [20] J. Cao and A. Emadi, "A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122-132, 2012, doi: 10.1109/TPEL.2011.2151206.
    [21] C. Zheng, W. Li, and Q. Liang, "An energy management strategy of hybrid energy storage systems for electric vehicle applications," IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1880-1888, 2018.
    [22] Q. Zhang and G. Li, "Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014-1021, 2020, doi: 10.1109/TPEL.2019.2912425.
    [23] L. Sun, P. Walker, K. Feng, and N. Zhang, "Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter," Energy, vol. 142, pp. 436-446, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.energy.2017.10.051.
    [24] J. Shen and A. Khaligh, "A Supervisory Energy Management Control Strategy in a Battery/Ultracapacitor Hybrid Energy Storage System," IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 223-231, 2015, doi: 10.1109/TTE.2015.2464690.
    [25] A.-L. Allègre, A. Bouscayrol, and R. Trigui, "Flexible real-time control of a hybrid energy storage system for electric vehicles," Electrical Systems in Transportation, IET, vol. 3, pp. 79-85, 09/01 2013, doi: 10.1049/iet-est.2012.0051.
    [26] O. Erdinc, B. Vural, and M. Uzunoglu, "A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system," Journal of Power Sources, vol. 194, no. 1, pp. 369-380, 2009/10/20/ 2009, doi: https://doi.org/10.1016/j.jpowsour.2009.04.072.
    [27] Z. Song, H. Hofmann, J. Li, J. Hou, X. Han, and M. Ouyang, "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, vol. 134, pp. 321-331, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.apenergy.2014.08.035.
    [28] B. Wang, Q. Hu, and Z. Wang, "Improving Power Output of Battery and Mode Switching Frequency Based on Real-Time Average Power Method for Multi-Mode Hybrid Energy Storage System in Electric Vehicles," IEEE Access, vol. 8, pp. 34654-34663, 2020, doi: 10.1109/ACCESS.2020.2974467.
    [29] B. Wang, J. Xu, B. Cao, and X. Zhou, "A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles," Journal of Power Sources, vol. 281, pp. 432-443, 2015/05/01/ 2015, doi: https://doi.org/10.1016/j.jpowsour.2015.02.012.
    [30] B. Wang, C. Wang, G. Ma, and L. Zhang, "Power-split strategy based on average power method for semi-active hybrid energy storage system in small electric vehicles," Energy Procedia, vol. 158, pp. 2994-2999, 2019/02/01/ 2019, doi: https://doi.org/10.1016/j.egypro.2019.01.970.
    [31] 鄭鴻偉, "基於電流饋入推挽式轉換器之隔離型混合儲能系統研製," Master, 電機工程系, National Taiwan University of Science and Technology, Taipei, Taiwan, 2020.
    [32] 游禮碩, "應用於電動載具之混合儲能系統建模與驗證," Master, 電機工程系, National Taiwan University of Science and Technology, Taipei, Taiwan, 2021.
    [33] X. Hu, N. Murgovski, L. M. Johannesson, and B. Egardt, "Comparison of Three Electrochemical Energy Buffers Applied to a Hybrid Bus Powertrain With Simultaneous Optimal Sizing and Energy Management," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1193-1205, 2014, doi: 10.1109/TITS.2013.2294675.
    [34] O. Balli and H. Caliskan, "On-design and off-design operation performance assessmentsof an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives," Energy Conversion and Management, vol. 243, p. 114403, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.enconman.2021.114403.
    [35] Y. T. Shin and Y. Teh, "Design analysis and considerations of power efficient electronic speed controller for small-scale quadcopter unmanned aerial vehicle," in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 8-10 Jan. 2018 2018, pp. 773-776, doi: 10.1109/CCWC.2018.8301770.
    [36] F. ÇAkici and M. K. LeblebİCİOĞLu, "Control System Design of a Vertical Take-off and Landing Fixed-Wing UAV," IFAC-PapersOnLine, vol. 49, no. 3, pp. 267-272, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.ifacol.2016.07.045.
    [37] A. A. Najm and I. K. Ibraheem, "Nonlinear PID controller design for a 6-DOF UAV quadrotor system," Engineering Science and Technology, an International Journal, vol. 22, no. 4, pp. 1087-1097, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.jestch.2019.02.005.
    [38] Z. Bai, Q. Feng, and Y. Qiu, "Design and Research of UAV For Campus Express Delivery," in 2021 2nd International Conference on Intelligent Design (ICID), 19-19 Oct. 2021 2021, pp. 208-213, doi: 10.1109/ICID54526.2021.00048.
    [39] Z. Zhu, H. Guo, and J. Ma, "Aerodynamic layout optimization design of a barrel-launched UAV wing considering control capability of multiple control surfaces," Aerospace Science and Technology, vol. 93, p. 105297, 2019/10/01/ 2019, doi: https://doi.org/10.1016/j.ast.2019.07.030.
    [40] E. Özbek, G. Yalin, S. Ekici, and T. H. Karakoc, "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, vol. 213, p. 118757, 2020/12/15/ 2020, doi: https://doi.org/10.1016/j.energy.2020.118757.
    [41] A. Rovira-Sugranes, A. Razi, F. Afghah, and J. Chakareski, "A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook," Ad Hoc Networks, vol. 130, p. 102790, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.adhoc.2022.102790.
    [42] I. Buchmann, "BU-101: When Was the Battery Invented?," in Batteries in a Portable World, I. Buchmann Ed., 1714, ch. BU-101: When Was the Battery Invented?
    [43] R. service. "Battery Recycling is Important for Environmental Health." https://reurl.cc/VEN5pA (accessed.
    [44] I. Buchmann, "BU-106a: Choices of Primary Batteries," in Batteries in a Portable World, I. Buchmann Ed., 1714, ch. BU-106a: Choices of Primary Batteries.
    [45] N.-X. Chen, "Design and Implementation of Cell and Module Balancing for Lithium Modules," Master, Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2020.
    [46] G.-P. CHEN, "Design and Implementation of a LiFePO4 Battery Management System for 5G Telecom Base Station," Master, Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2021.
    [47] T. R. Crompton, "9 - Lithium batteries," in Battery Reference Book (Third Edition), T. R. Crompton Ed. Oxford: Newnes, 2000, pp. 1-20.
    [48] A. Yoshino, "The Birth of the Lithium-Ion Battery," Angewandte Chemie International Edition, vol. 51, no. 24, pp. 5798-5800, 2012, doi: https://doi.org/10.1002/anie.201105006.
    [49] D. Deng, "Li‐ion batteries: basics, progress, and challenges," Energy Science & Engineering, vol. 3, no. 5, pp. 385-418, 2015.
    [50] "Samsung INR18650-25R 2500mAh (Green)." https://lygte-info.dk/review/batteries2012/Samsung%20INR18650-25R%202500mAh%20(Green)%20UK.html (accessed.
    [51] N. Omar et al., "Lithium-ion capacitor — Advanced technology for rechargeable energy storage systems," in 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 17-20 Nov. 2013 2013, pp. 1-11, doi: 10.1109/EVS.2013.6914718.
    [52] Y. Firouz, N. Omar, J.-M. Timmermans, P. Van Den Bossche, and J. Van Mierlo, "Lithium-ion capacitor–Characterization and development of new electrical model," Energy, vol. 83, pp. 597-613, 2015.
    [53] C.-M. Tseng, C.-K. Chau, K. M. Elbassioni, and M. Khonji, "Flight Tour Planning with Recharging Optimization for Battery-operated Autonomous Drones," ArXiv, vol. abs/1703.10049, 2017.
    [54] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Springer US, 2001.
    [55] W. W. Peterson and D. T. Brown, "Cyclic Codes for Error Detection," Proceedings of the IRE, vol. 49, no. 1, pp. 228-235, 1961, doi: 10.1109/JRPROC.1961.287814.
    [56] O. Tremblay and L.-A. Dessaint, "Experimental Validation of a Battery Dynamic Model for EV Applications," World Electric Vehicle Journal, vol. 3, no. 2, pp. 289-298, 2009. [Online]. Available: https://www.mdpi.com/2032-6653/3/2/289.

    無法下載圖示 全文公開日期 2025/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2120/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE