簡易檢索 / 詳目顯示

研究生: 李根
Gen Li
論文名稱: 以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之即時估測
UKF-based Real-Time Estimation of the Lithium-ion Battery State of Charge and Temperature
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蔡大翔
Da-Hsiang Tsai
楊景龍
Jing-long Long
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 112
中文關鍵詞: 鋰離子電池即時估測無跡型卡爾曼濾波器等效電路模型熱效應模型
外文關鍵詞: Lithium-ion battery, Real-time estimation, UKF, Equivalent circuit model, Thermal dynamic model
相關次數: 點閱:420下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以鋰離子電池之等效電路及熱動態模型為基礎, 應用無跡卡爾曼濾波器(Un-
    scented Kalman Filter, UKF)建立估測器進行鋰離子電池之充電狀態(State of Charge,SOC) 及溫度估測。等效電路模型參數鑑別乃利用交流阻抗分析實驗, 以最小平方法求出鋰離子電池在不同充電狀態與不同溫度實驗下之等效電路參數; 熱動態模型參數鑑別利用不同充放電行程在絕熱及自然散熱之實驗, 求得熱動態模型參數。並以不同充放電行程, 在不同充電狀態及操作溫度條件下進行估測器實驗驗證。在各操作條件下電池端電壓及溫度狀態之估測誤差均小於25mV 及0.03oC。


    Based on the equivalent circuit model and thermal dynamic model to estimate the state of charge(SOC) and temperature of Lithium-ion battery by unscented Kalman filter(UKF).The method of electrochemical impedance Spectroscopy(EIS) is employed to identify equivalent circuit model parameter of lithium-ion battery.Thermal dynamic model parameter is identified by experiment in adiabatic and natural heat dissipation condition.The estimator is validated via various charge / discharge cycles experiment in different temperature and SOC condition.The battery terminal voltage error and temperature error are smaller than 25mV and 0.03oC.

    目錄 摘要I Abstract II 致謝III 目錄IV 圖目錄VI 表目錄IX 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 等效電路模型文獻回顧. . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 熱效應模型文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 儲能元件估測法則. . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 實驗設備、軟體與估測法介紹10 2.1 元件介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 鋰離子電池介紹. . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 鋰離子電池原理. . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 交流阻抗分析儀. . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 直流電子負載機. . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 可程式直流電源供應器. . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 可程式恆溫試驗機. . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.5 霍爾元件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.6 電阻式溫度感應器. . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.7 數據擷取系統. . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 實驗軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 充電狀態估測法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 開路電壓法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 庫倫計量法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 鋰離子電池模型29 3.1 交流阻抗分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 鋰離子電池等效電路模型. . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 ZARC元件. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 Warburg元件. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.3 簡化鋰離子電池之等效電路模型. . . . . . . . . . . . . . . . . 43 3.3 鋰離子電池之熱效應模型. . . . . . . . . . . . . . . . . . . . . . . . . 48 4 卡爾曼濾波器介紹53 4.1 離散之卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 無跡卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 電壓及溫度效應之離散估測器設計. . . . . . . . . . . . . . . . . . . . 67 5 實驗結果72 5.1 開路電壓法實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2 以含溫度及電壓效應模型為基礎之估測結果. . . . . . . . . . . . . . . 75 5.2.1 絕熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 常溫散熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . 81 5.2.3 極低溫狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . 86 5.2.4 NYCC駕駛行程之即時估測. . . . . . . . . . . . . . . . . . . 89 6 結論與未來展望92 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 參考文獻93

    [1] 張永瑞、謝錦隆, 再生能源HCPV.SOFC 高功率地利調控系統研製告報技術,
    核能研究所,2009
    [2] Tarum Huria, Massimo Ceraolo,Rechargeable lithium battery energy storage
    systems for vehicular applications,2012
    [3] Shalini Rodrigues, N. Munichandraiah, A.K. Shukla, A review of state-
    of-charge indication of batteries by means of a.c. impedance measure-
    ments,Journal of Power Sources, Vol.87, August 4, pp. 12-20, 1999.
    [4] Stephan Buller,Impedance-Based Simulation Models for Energy Storage De-
    vices in Advanced Automotive Power Systems ISBN: 978-3-8322-1255-4
    [5] J. Gomez, R. Nelson, E.E. Kalu, M.H. Weatherspoon, J.P. Zheng, Equivalent
    circuit model parameters of a high-power Li-ion battery: Thermal and state
    of charge effects,Journal of Power and Energy, vol.196, January 15, pp. 4826-
    4831 , 2011.
    [6] P. Suresh, A.K Shukla, N. Munichandriah, Temperature dependence studies
    of a.c. impedance of lithium-ion cells, Journal of Applied Electrochemistry,Vol. 32, February 19, pp. 267-273 , 2002.
    [7] D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, D.U.
    Sauer, Characterization of high-power lithium-ion batteries by electrochemi-
    cal impedance spectroscopy. I. Experimental inverstigation, Journal of Power
    Sources, vol.196, June 15, pp. 5334-5341 , 2011.
    [8] Williford R, Viswanathan V, Zhang J-G, Effects of entropy changes in anodes
    and cathodes on the thermal behavior of lithium ion batteries, Journal of
    Power Sources, Vol.189,April 1,pp 101-107,2009.
    [9] Viswanathan V, Choi D, Wang D, Xu W, Towne S,Williford R,et al. Effect
    of entropy change of lithium intercalation in cathods and anodes on Li-ion
    battery thermal management, Journal of Power Source, Vol.195,June 1,pp.
    3720-3729,2010.
    [10] P. S.T. A. D. E. R. Alvun J. Salkind, Craig Fennie, Determination of state-of-
    change and state-of-health of batteries by fuzzy logic methodology, Journal
    of Power Sources, vol. 80, pp. 293-300, 1999.
    [11] A. J. Sabine Piller, Marion Perrin, Methods for state-of-charge determination
    and their applications, Journal of Power Sources, vol. 96, pp. 113-120, 2001.
    [12] C. C. W. K.T.Chau, K.C. Wu, A new battery capacity indicator for nickel-
    metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system, Energy Conversion and Management, vol. 44, pp. 2059-2071, 2002.
    [13] G. L. Plett, Extended kalman filtering for battery management systems of
    lipb-based hev battery packs part 1. background, Journal of Power Sources,
    vol. 134, pp. 252-261, 2004.
    [14] M. S. Jaehyun Han, Dongchul Kim, State-of-charge estimation of lead-acid
    batteries using an adaptive extended kalman filter, Journal of Power Sources,
    vol. 188, pp. 606-612, 2009.
    [15] H. H. G. Hongwen He, Rui Xiong, Online estimation of model parameters
    and stateof- change of lifepo4 batteries in electric vehicles, Applied Energy,
    vol. 89, pp. 413-420, 2012.
    [16] C. C. M. P. Wei He, Nicholas Williard, State of charge estimation for electric
    vehicle batteries using unscented kalman filtering, Microelectronics Reliabil-
    ity, vol. 53, pp. 840-847, 2013.
    [17] 張智星, MATLAB 程式設計與應用, 第1-2 1-5 頁. 清蔚科技股份有限公司.
    [18] 李宜達, 控制系統設計與模擬, 第1-1 1-2 頁. 全華科技圖書股份有限公司,
    2003.
    [19] N. SATO: Thermal behavior analysis of lithium-ion batteries for electric and
    hybrid vehicles. J. of Power Sources 99, 2001, pp. 70-77
    [20] Y. NISHI: Lithium-ion secondary batteries: past 10 years and the future. J.of
    Power Sources 100, 2001, pp. 101-106
    [21] M.Specialties, resistance Temperature Detectors:PT-100
    [22] E. Barsoukov and J. R. Macdonald, Impedane spectroscopy theory, experi-
    ment and applications, Wiley-Interscience.
    [23] 鄭文欽, 含熱效應之超級電容等效電路模型, 碩士論文,100年, 台北.
    [24] 曹楚南、張鑒清, 電化學阻抗譜導論. 科學出版社, 2002.
    [25] Matthieu Dubarry, Arnaud Devie, Initial Conditioning Characterization Test
    and other preliminary testing, Electric Vehicle Transportation Center,2015
    [26] Peter Keil, Simon F. Schuster, J?orn Wilhelm, Julian Travi, Calendar Aging
    of Lithium-Ion Batteries Impact of the Graphite Anode on Capacity Fade,
    Journal of The Electrochemical Society, 163(9)(2016)
    [27] N.H.Faezaa Ismail,S.Fauziah Toha,N.A. Mohd Azubir, Simplified Heat Gen-
    eration Model for Lithium ion battery uesd in Electric vehicle, IOPSe-
    cience,2016
    [28] Kazuo Onda, Takamasa Ohshima, Masato Nakayama, Thermal behavior of
    small lithium-ion battery during rapid charge and discharge cycles Journal of
    Power Sources 158(2006)535-542
    [29] Jinlei Sun, Guo Wei, Lei Pei, Rengui Lu, Online Internal Temperature
    Estimation for Lithium-Ion Batteries Based on Kalman Filter Energies
    2015,8,4400-4415
    [30] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻
    抗估測, 碩士論文,99年, 台北.
    [31] R. E. Sonntag, C. Borgnakke, and G. J. V. Wylen, Fundamentals of thermo-
    dynamics, SIXTH EDITION, 2009.
    [32] Katsuhiko Ogata, Discrete-Time Control Systems, 1995
    [33] Ahmad RAHMOUN, Helmuth BIECHL, Modelling of Li-ion batteries using
    equivalent circuit diagrams, Electrical Review, ISSN 0033-2097(2012)
    [34] Jaemoon Lee , Oanyong Nam, B.H. Cho, Li-ion battery SOC estimation
    method based on the reduced order extended Kalman filtering, Journal of
    Power Sources 174(2007)
    [35] Seongjun Lee, Jonghoon Kim, Jaemoon Lee, B.H. Cho, State-of-charge and
    capacity estimation of lithium-ion battery using a new open-circuit voltage
    versus state-of-charge, Journal of Power Sources 185 (2008)
    [36] 陳璟安, 含熱效應之鋰離子電池等效模型建立, 碩士論文,106年, 台北.

    QR CODE