簡易檢索 / 詳目顯示

研究生: 鄭瑞娥
Jui-O Cheng
論文名稱: 有機-無機界面整合功能及光電應用之研究
Studies on the integrated functions in organic-inorganic interface and their optical- electric applications
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱文英
Wen-Yen Chiu
陳登科
Teng-Ko Chen
張豐志
Feng-Chih Chang
吳震裕
J. Y. Wu
李俊毅
Jiunn-Yi Lee
馬振基
Chen-Chi M. Ma
邱士軒
Shih-Hsuan Chiu
蕭耀貴
Yao-Kuei Hsiao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 147
中文關鍵詞: 聚口比咯化成鋁箔固態電容器聚醯亞胺熱醯亞胺化配向膜向列型液晶刷磨配向複折射光學紋理光電效應
外文關鍵詞: Polypyrrole(PPy), Polyimide(PI), Thermal Imidization, Alignment layer, Rubbing, Electro-Optic effect
相關次數: 點閱:710下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對有機-無機-界面混成整合機能之固態晶片型電容器之材料製程及元件特性加以探討,即著眼於Al2O3與導電性聚口比咯界面整合加工技術及電容特性深入解析。 另一方面,對於LCD Modules中之ITO glass/PI之有機-無機界面整合,經由聚醯亞胺(Polyimides)之合成及其thermal imidization process之探討,及應用於 ITO玻璃基板之聚醯亞胺配向膜(alignment film)的各項加工參數對LCD光電特性之影響效應進行分析。
    在Al2O3與導電性聚口比咯界面整合加工技術及電容特性研究議題上,以原子力顯微鏡(AFM)分析化成鋁箔之表面組織結構,並以SEM及EDS觀察解析聚口比咯在化成鋁箔上之分佈狀態,再經由導電係數、串聯電容、電阻抗值及損失因子等電性能之評估,建立具有最佳串聯電容特性之化成鋁箔表面結構參數。
    經由AFM、SEM、EDS與電性能之分析結果可知,13V化成鋁箔之表面凹凸結構比較緻密、微孔洞結構多,有利於增大比表面積,口比咯進入兩種鋁箔的相對量,13V比8V來的多。在各項電子性能評估顯示,13V化成箔有較好的電容特性。
    在聚醯亞胺(Polyimides)之合成及其thermal imidization process之探討方面,結合熱重量損失分析(TGA)、剛性擺錘流變儀(RPR)及傅立葉轉移紅外線光譜儀(FT-IR)等分析,對於由同一種二酸酐分別與四種二胺合成的聚醯胺酸溶液(Precursor Polyamic acid;PAA)轉化成PI系統之熱醯亞胺化程序進行分析,提供對於新的PI系統,觀察其醯化行為、反應溫度區間、反應時間、轉化率測定及醯化後PI的熱性質使用範圍(Tg, Td)的新方法。
    TGA結果觀察,用相同二酐組合不同的二胺所合成的PAA-PI系統,有其各別的反應溫度區間及反應速度。 分子主鏈結構中的拉、推電子基團效應及分子鏈的剛柔性影響醯亞胺化反應。在RPR測試結果可觀察到,在各個等溫溫度下醯亞胺化整體反應皆約於20min內即達平衡,而完成該等溫溫度的階段反應。隨著PAA環化成PI的醯亞胺化程度增高,反應平衡damping高度與Tg越高,亦即分子鏈剛硬度影響最後的反應平衡damping 高度與Tg。
    於 ITO玻璃基板之聚醯亞胺配向膜(alignment film)的各項加工參數對LCD光電特性之影響效應研究方面,由於Liquid crystal displays(LCDs)之各種光電顯示特性,深受液晶材料及配向膜材料種類、配向膜成形條件、界面處理方式及液晶基板配向組合方向…等參數所影響。故此研究利用DSC、TGA、Moisture Analyzer、AFM及SEM等分析,可快速、簡易檢視液晶與配向膜等應用材料之本身特性,提供的適當製程條件選擇。 另外,藉由接觸式的布輪絨毛布的單方向性機械刷磨(rubbing)配向技術,進行液晶及配向膜間之界面處理。預傾角隨配向布壓入量的增加而增加,而不同的配向方向亦對預傾角的情況產生影響。採用P型向列型液晶Merck MJ99159並搭配Polyimide配向液JSR-AL 21000,經所設定的製程條件組成LC cells,在curing、rubbing及配向組合方向等加工參數影響下,探討LC cells樣品所呈現各種不同的光電效應表現。


    The objectives of this study are to investigate the materials process and component characters of solid state chip capacitors with the integrated functions in organic-inorganic interface. The capacitance features and the interface process technique between Al2O3 and polypyrrole were analyzed in depth. In addition, for the organic-inorganic interface integration between ITO glass and PI in LCD modules, those analyses including the polyimides synthesis and its thermal imidization behavior and the electro-optic effect in LCD affected by the various processing parameters of polyimides coated upon ITO glass substrate were studied in detail.
    In this study of the capacitance features and the interface integrated process technique between Al2O3 and polypyrrole, Atomic force microscope (AFM) was applied to analyze the surface structure of the chemically synthesized aluminum foil. The topography and distribution of polypyrrole on the surface of the foil were observed and analyzed through scanning electron microscope (SEM) and Energy Dispersive X-ray Spectrometer (EDS). At last, the evaluation of electric performances such as conductivity, series capacitance, impedance and dissipation factor(DF)were conducted so as to establish the parameters for the surface structure of the chemically synthesized foil with the best series capacitance features.
    The result of the combined use of AFM, SEM/EDS and RPR showed the 13V of aluminum foil have more micro-pores structure, higher surface area and much polypyrrol entering inside foil than the 8V type of aluminum foil. And as a result, 13V type of aluminum foil exhibited better capacitance features than 8V type of aluminum foil under various electric performance evaluations.
    In this study of the polyimides synthesis and their thermal imidization behavior, four types of precursors polyamic acid (PAA) were synthesized, meanwhile, thermal gravity analysis(TGA), rigid body pendulum rheometer experiment(RPR), and Fourier transform infrared(FT-IR)spectroscopy were combined to analyze the thermal imidization processes from precursors PAA to polyimides(PIs). This procedure provides the new PAA-PI system with new methods for observing the imidization behavior, thermal properties and finding the optimization of processing conditions.
    The results of the TGA and FTIR imidization conversion analysis revealed that the PAA-PI systems synthesized with identical dianhyride and different diamines have distinct reaction temperature regions and reaction rate. The inductive effect of withdrawing and releasing group and the rigidity-flexibility of the molecular chain in the structure of molecular backbone chain influence the imidization reaction.
    We have seen from the RPR test results that the entire imidization reaction in every isothermal testing temperature reaches an equilibrium condition and completes the gradation reaction of each isothermal temperature within 20 minutes. Glass transition temperatures (Tg) of PIs increase with increasing the conversion rate from PAA into PI and the rigidity of molecular chain.
    In this study of the electro-optics effect in LCD affected by the various processing parameters of polyimides coated upon ITO glass substrate, since The electro-optics characteristics of display in a LCD are deeply affected by those parameters including the kinds of liquid crystals and alignment layer materials, the forming conditions of alignment layer, the substrates alignment mode and the processing conditions of rubbing alignment in the interface treatment, etc., these analyses of differential scanning calorimeter (DSC), thermal gravity analysis (TGA) and moisture analyzer are utilized to examine the properties in liquid crystals and PI alignment layer materials. The interface treatment between liquid crystals and PI alignment layers were executed via the alignment technology of unidirectional mechanical rubbing with a rayon velvet cloth. In the rubbing treatment with a rayon velvet cloth, the pretilt angle of LC molecules increases along with increasing the pile impression. Moreover, the different alignment modes also affect the pretilt angle of liquid crystal.
    Those LC cell specimens were fabricated using Merck MJ99159 NP liquid crystal and PI alignment layer material (JSR-AL 21000) with various process conditions. Under those parameters influence of curing, rubbing and alignment direction, cell specimens display various electro-optics effects.

    中文摘要………………………….…………………………І 英文摘要……………………………… 誌謝…………………………………VI 目錄………………………………………VII 圖表索引………………………………………………………………XI 第一章 緒論..…………………………………1 1.1. 研究背景及現狀…………………………………………………1 1.2 電容器………………………………………………………………2 1.2.1電容器原理………………………………………………………2 1.2.2電容器分類………………………………………………4 1.3 導電性高分子…………………………………………………6 1.3.1高分子分子結構與導電性.………………………………………8 1.3.2. 導電高分子於電容器中須具條件……………………………12 1.3.3. 聚口比咯(Polypyrrole;Ppy)……………………………13 1.4聚醯亞胺(Polyimide;PI)……………………………………15 1.5液晶(Liquid Crystal;LC)……………………………………19 1.5.1液晶的分類………………………………………………20 1.5.2. 液晶分子配向排列的種類…………………………………………24 1.5.3. 液晶顯示器之分類……………………………………25 1.6 研究特徵與目的 ………………………………………………30 1.7 研究架構…………………………………………………………31 1.8 參考文獻…………………………………………………………39 第二章 化成鋁箔型態對聚口比咯固態電容器之影響研究……42 中文摘要………………………………………………………………43 英文摘要………………………………………………………………44 2.1 前言………………………………………………………………45 2.2 實驗……………………………………………………………46 2.2.1材料及試片製作…………………………………………………46 2.2.2測試………………………………………………………………47 2.2.2.1 原子力顯微鏡分析 …………………………………………47 2.2.2.2 SEM/EDS分析………………………………………………47 2.2.2.3 導電率量測…………………………………………………47 2.2.2.4 電容器特性評估……………………………………………48 2.3 結果與討論………………………………………………………48 2.3.1 口比咯形成機制與化成箔之表面組織結構研究…………48 2.3.2 口比咯化學含浸層之擴散分佈狀況分析……………………49 2.3.3 口比咯電容器元件材料之電氣性能探討……………………50 2.4 結論 ………………………………………………………………51 2.5 參考文獻 ………………………………………………………52 第三章 芳香族聚醯亞胺(ODPA-ODA, ODPA-MDA, ODPA-SDA and ODPA-TDA)熱環化行為研究……………………67 中文摘要………………………………………………………………68 英文摘要………………………………………………………………69 3.1 前言……………………………………………………………………71 3.2 實驗………………………………………………………………………72 3.2.1材料及聚醯胺酸溶液(PAAs)的合成…………………………72 3.2.2測試………………………………………………………………73 3.2.2.1 熱重量損失分析Thermal Gravity Analysis (TGA) ……73 3.2.2.2 FT-IR分析…………………………………………………73 3.2.2.2 剛性擺錘流變儀(Rigid-Body Pendulum Rheometer)測試73 Principle of Rigid-body Pendulum Rheometer (RPR)…………74 3.3 結果與討論 ………………………………………………………75 3.3.1 熱醯亞胺反應溫度之分析……………………………………75 3.3.2 等溫醯亞胺轉化率探討………………………………………77 3.3.3 熱醯亞胺化行為及玻璃轉移溫度之分析……………………79 3.4 結論 ………………………………………………………………82 3.5 參考文獻…………………………………………………………84 第四章 聚醯亞胺配向膜加工參數與LC cells光電特性關係之研究100 中文摘要 ……………………………………………………………101 英文摘要 …………………………………………………………102 4.1 前言 ……………………………………………………………103 4.2 實驗 ………………………………………………………105 4.2.1 材料與配向層及液晶盒之製備………………………………105 4.2.2 測試……………………………………………………………106 4.2.2.1 微分掃瞄熱分析儀(DSC) ………………………………106 4.2.2.2 熱重量損失分析(TGA)…………………………………106 4.2.2.3 溶劑揮發速率分析(Moisture Analyzer)……………106 4.2.2.4 掃瞄式電子顯微鏡(SEM)………………………………107 4.2.2.5 配向膜表面結構觀測(AFM)……………………………107 4.2.2.6 液晶分子預傾角之量測…………………………………107 4.2.2.7 液晶盒複折射光學紋理之觀測……………………………107 4.2.2.8 液晶盒之電壓與光穿透率曲線(V-T curve)之量測…108 4.3 結果與討論 ……………………………………………………108 4.3.1材料特性分析…………………………………………………108 4.3.1.1液晶(Liquid crystal;LC)…………………………108 4.3.1.2聚醯亞胺配向膜(Polyimide alignment layer)………109 4.3.2液晶預傾角與rubbing及配向條件之關係……………………111 4.3.3液晶盒光電效應與rubbing及配向條件之關係……………113 4.3.3.1無rubbing配向的液晶盒………………………………113 4.3.3.2平行配向液晶盒(↑↑)…………………………115 4.3.3.3正交平行配向液晶盒(↗ ↖)…………………………117 4.4 結論 ……………………………………………………………118 4.5 參考文獻 ………………………………………………………120 第五章 總結論……………………………………………………142 作者簡介………………………………………………………………146 著作目錄……………………………………………………………147 圖 表 索 引 圖1.1 Schematic Structure of capacitor.……………………… 3 圖1.2鋁電解電容之等效迴路………………………………………… 3 圖1.3電容器阻抗vs.頻率之關係…………………………………… 4 圖1.4 Conventional aluminum electrolytic capacitor.……… 5 圖1.5 Conductivities of various compounds. ………………… 7 圖1.6 Chemical structure of some important conductive polymer………10 圖1.7 A possible structure for polypyrrole. ……………… 13 圖1.8 Schematic representation the reaction model for polypyrrole by polymerization……… 14 圖1.9 The reaction model for polypyrrole on electrode surface.………………… 15 圖1.10. 液晶性物質的溫度變化所造成之狀態轉換………………20 圖1.11 A general template for main chain liquid crystal polymers.………… 20 圖1.12 A general template for side chain liquid crystal polymers.……………… 21 圖1.13 向列型液晶分子構造.…………………………………… 22 圖1.14層列型液晶分子構造. ………………………………………23 圖1.15. 膽石醇型液晶之分子構造……………………………… 24 圖1.16液晶分子配向排列的種類. ………………………………… 25 圖1.17 TN型光電效應之原理示意圖. …………………………… 26 圖1.18 STN型液晶分子扭曲狀態的模式圖. ……………………… 27 圖1.19 薄膜電晶體液晶顯示器(TFT-LCD)結構簡圖…………… 28 圖1.20 薄膜電晶體液晶顯示器(TFT-LCD)結構簡圖…………… 28 圖1.21 TFT一個畫素的結構………………………………………… 29 圖2.1 The schematic equipment of chemical dipping polymerization…………56 圖2.2 The schematic equipment of electrochemical polymerization……………56 圖2.3 Schematic representation of the impregnation process for the Polypyrrole in micro-pore surface of Chemically Synthesized Aluminum Foil……………….57 圖2.4 Proposed mechanism of formation of Ppy and Al2O3 on Al electrode………… 58 圖2.5 The 3D micro-images of 13V Aluminum Foil surface by Atomic Force Microscope.………………………………………… 59 圖2.6 The 3D micro-images of 8V Aluminum Foil surface by Atomic Force Microscope.………………………………………… 59 圖2.7 Beaing of 13V Al by Atomic Force Microscope……………… 60 圖2.8 Beaing of 8V Al by Atomic Force Microscope………………………… 60 圖2.9 Section of 13V Al by Atomic Force Microscope……………………61 圖2.10 Section of 8V Al by Atomic Force Microscope………………………61 圖2.11 Power Spectral Density of 13V Al by Atomic Force Microscope ……… 62 圖2.12 Power Spectral Density of 8V Al by Atomic Force Microscope.………… 62 圖2.13 SEM photomicrographs of surface on 8 V aluminum foil dipped once in the PPy chemical oxidation treatment solution (×6000)…………….. 63 圖2.14 SEM photomicrographs of surface on 13 V aluminum foil dipped once in the PPy chemical oxidation treatment solution (×6000)……….…….... 63 圖2.15 SEM/EDS photomicrographs of cross-section of 8V aluminum foil dipped twice in the PPy chemical oxidation treatment solution (X800)......64 圖2.16 SEM/EDS photomicrographs of cross-section of 13V aluminum foil dipped twice in the PPy chemical oxidation treatment solution (X800)…...64 圖2.17 Conductivity of both 8V and 13V Aluminum foil with PPy chemical oxidation and electrochemical polymerization treatments.….…...65 圖2.18 The relationship between series capacitance(Cs)and frequency(F) in both 8V and 13V Aluminum foil with PPy chemical oxidation and electrochemical polymerization treatments………………………..…...65 圖2.19 The relationship between impedance(Z)and frequency(F) in both 8V and 13V Aluminum foil with PPy chemical oxidation and electrochemical polymerization treatments.…………………………...66 圖2.20 The relationship between Dissipation Factor(DF)and frequency(F) in both 8V and 13V Aluminum foil with PPy chemical oxidation and electrochemical polymerization treatments.…………………………...66 圖3.1 Preparation of polyamic acid (PAAs) precursors and polyimides (PIs)… 88 圖3.2 Schematic diagram of the Rigid-body Pendulum instrument…….…………89 圖3.3 Pendulum displacement-time curve.……………………………..………… 89 圖3.4 Thermogravimetric analysis of four type polyimides (ODPA-ODA-PI, ODPA-MDA-PI, ODPA-TDA-PI and ODPA-SDA-PI) converted from PAA in testing.…………………………….………………90 圖3.5 FT-IR absorption characterization of (a) anhydride (b) polyamic acid(PAA) and (c) polyimide(PI)…………………….….…91 圖3.6 Main reactions in polyimide synthesized process of combining dianhydride and diamine.…………………………………………….…..…92 圖3.7 The illustration of FT-IR adsorption band in PI and related compounds.…...93 圖3.8 The isothermal imidization conversion from polyamic acid (ODPA-ODA, ODPA-MDA, ODPA-TDA and ODPA-SDA) into polyimide by FT-IR...…94 圖3.9 The imidization behavior from ODPA-TDA polyamic acid to polyimide with four isothermal curing by RPR…………………….………95 圖3.10 The imidization behavior from ODPA-SDA polyamic acid to polyimide with four isothermal curing by RPR…………………….………95 圖3.11 The imidization behavior from ODPA-ODA polyamic acid to polyimide with four isothermal curing by RPR……………………….……96 圖3.12 The imidization behavior from ODPA-MDA polyamic acid to polyimide with four isothermal curing by RPR…………………….………96 圖3.13 The comparison of imidization behavior between ODPA-ODA, ODPA-MDA, ODPA-TDA and ODPA-SDA cured from polyamic acid into polyimide at 350˚C isothermal curing by RPR.….……97 圖3.14 The dynamic scanning curves of ODPA-TDA-PI after converted from PAA with four isothermal curing……..……………………………97 圖3.15 The dynamic scanning curves of ODPA-SDA-PI after converted from PAA with four isothermal curing……..……………………………98 圖3.16 The dynamic scanning curves of ODPA-ODA-PI after converted from PAA with four isothermal curing……..……………………………98 圖3.17 The dynamic scanning curves of ODPA-MDA-PI after converted from PAA with four isothermal curing……..……………………………99 圖3.18 The comparison of glass transition temperature between ODPA-TDA-PI and ODPA-SDA-PI converted from PAA with 350℃ isothermal curing.………………………………..…….99 圖4.1 The schematic illustration of PI transferential-coater and coating process.. 127 圖4.2 The schematic diagram of rubbing process and the SEM photograph of rayon velvet cloth……………………………………………128 圖4.3 The SEM micrograph of the rod-shape Spacer before mixed with frame glue……………………………129 圖4.4 The dynamic scanning thermograms of the nematic liquid crystal Merck MJ991597 at the heating and cooling rate of 10℃/min by DSC.…130 圖4.5 Thermogravimetric analysis of the polyimide precursor (JSR-AL 21000) in the dynamic heating testing.……………………..………………..….…131 圖4.6 The solvent evaporated curves of polyimide precursor (JSR-AL 21000) with isothermal testing at 120℃, 140℃ and 160℃ for 1 hour by Moisture Analyzer.………………………………….…… 132 圖4.7 The dynamic scanning thermograms of the polyimide precursor (JSR-AL 21000) and the cured polyimide at a heating rate of 10℃/min by DSC……………..……………………………………… 133 圖4.8 The surface topography observation of cured PI layer without rubbing treatment by Atomic Force Microscope (AFM)...............134 圖4.9 The reverse tilt disclination of liquid crystal molecule without pretilt angle θP assistant in the applied voltage.……..……...…… 135 圖4.10 The reverse-tilt alignment defect in a splay-aligned liquid crystal cell..…135 圖4.11 Theorem of the electro-optics effect on electrically controlled birefringence mode ( ECB).(Homogeneous alignment).……..…………136 圖4.12 Theorem of the electro-optics effect on twist nematic mode(TN)….…137 圖4.13 The voltage- transmission (V-T) curve of three kinds of liquid-crystal cells specimens at the applied voltage of 1~10 volt with the square-wave frequency of 1KHz.……………………………… 138 圖4.14 The birefringence optical textures of the liquid-crystal cell by non-rubbing PI alignment layers at the applied voltage of 1~10 volt with the square-wave frequency of 1KHz……..………..………..………139 圖4.15 The birefringence optical textures of the liquid-crystal cell with the rubbed PI alignment layer of 0.4 mm pile impression assembled by parallel rubbing alignment(↑↑)at the applied voltage of 1~10 volt with the square-wave frequency of 1KHz.…………..………………...…140 圖4.16 The birefringence optical textures of the liquid-crystal cell with the rubbed PI alignment layer of 0.4 mm pile impression assembled by perpendicular parallel rubbing alignment(↗ ↖) at the applied voltage of 1~10 volt with the square-wave frequency of 1KHz.…………141 表1.1 Electrical conductivity of high conductivity polymer..…………………..…11 表1.2 Conductivity of Heterocyclic polymers……………………………….……12 表2.1 Comparison of AFM analysis results in Figure 5~10 between 8V and 13V...55 表3.1 The thermogravimetic properties of four type polyimides (ODPA-ODA-PI, ODPA-MDA-PI, ODPA-TDA-PI and ODPA-SDA-PI)……………………87 表3.2 The Tg peak values of the dynamic scanning curves of ODPA-TDA-PI, ODPA-ODA-PI, ODPA-MDA-PI and ODPA-SDA-PI extracted from Figure11 to Figure 14.…………………………………………..… 87 表4.1 The physical properties of the nematic liquid crystal(MJ991597) provided by Merck.……………………………………………………..…124 表4.2 Dependence of the roughness of the PI layer surface and LC Pretilt θP on rubbing and alignment condition.………...…………125 表4.3 The summary of the voltage- transmission (V-T) curve in figure 13. ........126

    1. Larmat, Fernando; Reynolds, John R.; Qiu, Yong-Jian, Polyrrole as a solid electrolyte for tantalum capacitors, Synthetic metals, 79, p229-233 (1996)
    2. Patel, Kaushal S.; Kohl, Paul A.; Allen, Sue Ann Bidstrup, Dual Capacitor Technique for Measurement of Through-Plane Modulus of Thin Polymer Films, Journal of Polymer Science, 38, p1634-1644 (2000).
    3. Kudoh,Y.; Fukuyama, M.; Yoshimura, S., Stability study of polypyrrole and application to highly thermostable Aluminum solid electrolytic capacitor, Synthetic Metals, 66, p157-164 (1994)
    4. Kotz, R.; Carlen, M., Principles and applications of electrochemical capacitors, Electrochimica Acta , 45, p2483-2498 (2000)
    5. Zheng, J. P.; Jow, T. R., High energy and high power density electrochemical capacitors, Journal of Power Sources, 62, p155-159 (1996)
    6. Satoh, Masaharu; Ishikawa, Hitoshi; Amano, Kosuke; Hasegawa, Etsuo; Yoshino, Katsumi, Highly conducting polypyrrole prepared from homogeneous mixtures of pyrrole/oxidizing agent and its applications to solid tantalum capacitors, Synthetic Metals, 65, p39-44 (1994)
    7. Kudoh, Yasuo; Fukuyama, Masao; Yoshimura, Susumu, Stability study of polypyrrole and application to highly thermostable aluminum solid electrolytic capacitor, Synthetic Metals, 66, p157-164 (1994)
    8. Berlot, Isabelle; Labbe, Pierre ; Letellier, Pierre; Jean-Claude; Turmine, Moutet Mireille, Electrochemical characterization of micellization of a pyrrole-substituted cationic surfactant, Journal of Power Sources , 60, p239-247 (1996)
    9. Krings, L. H. M.; Havinga, E. E.; Donkers, J. J. T. M., The application of polypyrrole as counterelectrode in electrolytic capacitors, Synthetic Metals, 54, p451-460 (1993)
    10. Rapi, S.; Bocchi, V.; Gardini, G. P., Conducting Polypyrrole by chemical synthesis in water, Synthetic Metals, 24, p217-221 (1988)
    11. Genies, E. M.; Bidan, G.; Diaz, A. F., Spectroelectrochemical study of Polypyrrole films, J. Electroanal. Chem., 149, p101-113 (1983)
    12. Chainet, E. and Billon, M., In situ STM study of the counterion effect on the doping stages of Polypyrrole films, Synthetic Metals 99, p21-26 (1999)
    13. Park, D. S.; Shim, Y. B.; Park, S. M., Degradation kinetics of Polypyrrole films, J. Electrochemical Soc., 140, p2749-2752 (October, 1993)
    14. Naoi, K.; Oura,Y.; Yoshizawa, A.; Takeda, M.; Ue, M., Simultaneous formation of separate conducting and insulating layers on Aluminum electrode by electrolysis, Electrochemical and Solid-State Letters., 1, p34-36 (July, 1998)
    15. Idla, K.; Johansson, L.-S.; Campbell, J. M.; Inganas, O., XPS and SIMS study: adhesion of polypyrrole film on titanium, Surface and Interface Analysis, 30, p557-560 (2000)
    16. Dhanabalan, A.; Mello, S.V.; Oliveira, O.N. Jr., Preparation of Langmuir-Blodgett films of soluble polypyrrole, Macromolecules, 31, p1827-1832(1998)
    17. RAM, M. K.; SUNDARESAN, N. S., Electrochromic respones of thin Polypyrrole film in semi-solid electrolyte, Journal of Materials Science Letters, 15, p997-1000, (1996)
    18. United States Patent: 4609971, (1986)
    19. United States Patent: 5428500, (1995)
    20. United States Patent: 5960279, (1999)
    21. United States Patent: 6008513, (1999)
    22. Morimoto, T.; Hiratsuka, K.; Sanada Y.; Kurihara, K., Electric double-layer capacitor using organic electrolyte, Journal of Power Sources, 60, p239-247, (1996)
    23. Niwa, Shinichi, Aluminum solid electpolytic capacitor with organic semiconductor, Synthetic Metals, 18, p665-670, (1987)
    24. Satoh, M.; Ishikawa, H., Characterization of a tantalum capacitor fabricated with a conducting Polypyrrole as a counter electrode, Synthetic Metals, 71, p2259-2260, (1995)
    25. Yang, Bangchao; Xiao, Zhanwen, Effect of pretreatm for Aluminum foil on its electrochemical properties, Electron Compon Mater, V16, No3, p1-9, (1997)
    26. Kupila, E. L.; Kankare, J., Electropolymerization of Pyrrole: effects of pH and growth kinetics of Polypyrrole, Synthetic Metals, 55, p1402-1405, (1993)
    27. Satoh, Masaharu; Kaneto, Keiichi; Yoshino, Katsumi, Dependences of electrical and mechanical properties of conducting Polypyrrole films on conditions of electrochemical Polymerization in an aqueous medium, Synthetic Metals, 14, p289-296, (1986)
    28. Lu, Yiqing; Shi, Gaoquan; Li, Chun; Liang, Yingqiu, Thin Polypyrrole films prepared by chemical oxidative polymerization, Journal of Applied Polymer Science, 70, p2169-2172, (1998)
    29. Wu, X.; Hebert, K., Development of surface impurity segregation during dissolution of Aluminum, J. Electrochem. Soc., Vol. 143, No. 1, p83-91, (January, 1996)
    30. Shimizu, K.; Kobayashi, K.; Thompson G. E.; Wood, G. C., A novel technique for ready determination of cathodic activity of intermetallic compounds during corrosion of Aluminum, Corrosion Science, Vol. 34, No. 9, p1475-1480, (1993)
    31. Wernick, S.; Pinner, R., The surface treatment and finishing of Aluminum and its alloys, V1, 4th Ed p233-354. Robert Draper Ltd, Teddington, (1972)
    32. Bockris, J. O’M.; White, R. E.; Conway, B. E., Modern aspects of electrochemistry, V20, p409, Plenum Press, New York, (1989)

    QR CODE