簡易檢索 / 詳目顯示

研究生: 劉庭閣
Ting-Ge Liu
論文名稱: 聚乳酸-聚醚-聚乳酸三團聯共聚物水溶液中自組裝之電解質效應
Effect of Electrolytes on Self-assembly of Poly(L-lactic acid)/Polyether Triblock Copolymers in Aqueous Solutions
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 朱侯憲
Hou-Hsein Chu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 臨界微胞濃度螢光探針鹽效應微胞粒徑鹽析團聯共聚物
外文關鍵詞: critical micelle concentration, fluorescent probe, block copolymers, salt effect, salting out, micelle size
相關次數: 點閱:154下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將聚乙二醇(PEG)的聚合度固定為91(PEG分子量為4000 g/mol),合成兩種不同疏水鏈段聚合度(聚合度為264及918)的聚乳酸與聚乙二醇三團聯共聚物(PLLA-PEG-PLLA)。使用螢光探針法測量臨界微胞濃度,並將不同電解質(氯化鈣或氯化鈉)加入共聚物溶液中,改變電解質濃度及溶液的環境溫度,接著利用臨界微胞濃度計算其微胞化熱力學參數,再使用動態光散射儀測量微胞粒徑,探討電解質濃度、電解質物種及高分子疏水段聚合度對臨界微胞濃度、微胞化熱力學參數及微胞粒徑之影響。
    從臨界微胞濃度實驗可得知,臨界微胞濃度會隨著溫度上升而增加,也會隨著電解質濃度增加而下降。在溶液中活性係數較大的電解質(即NaCl),使臨界微胞濃度下降較為明顯。疏水鏈段聚合度愈大時,臨界微胞濃度愈小,且電解質濃度效應及電解質物種效應愈不明顯。利用salting係數比較不同共聚物在不同的電解質溶液中salting效果,可得知salting係數會隨著溫度上升,疏水鏈段聚合度愈小或平均離子半徑愈小而愈大,鹽析效果愈明顯。
    從微胞化熱力學參數的計算結果得知,微胞化自由能之絕對值及微胞化標準熵(正值)隨著電解質濃度增加而增加,微胞化標準焓(負值)之絕對值會隨著電解質濃度增加而減少,且電解質在溶液中活性係數愈大,影響較為明顯。共聚物中疏水鏈段聚合度愈大,微胞化自由能之絕對值及微胞化標準熵隨之愈大,而微胞化標準焓之絕對值隨之愈小,且電解質濃度及物種效應較不明顯。不同共聚物在不同的電解質溶液中對微胞化熱力學參數之影響程度也可以利用salting係數來解釋。
    在中間共聚物濃度時,使用動態光散射的實驗中,可發現微胞在電解質濃度為0.1 M時,相較於在純水中測得的平均微胞粒徑有四倍以上增加,且較大的粒徑族群出現,表示有聚集產生,平均微胞聚集粒徑隨著電解質濃度增加而更明顯地變大。在NaCl溶液中,測得的平均微胞聚集粒徑較大,微胞聚集也會較為明顯。發現電解質影響微胞粒徑的趨勢與臨界微胞濃度相同。


    This study is to synthesize poly(L-lactide)-poly(ethylene glycol)- poly(L-lactide)(PLLA-PEG-PLLA) triblock copolymers with various PLLA segment lengths (degree of polymerization= 264 and 918) and fixed PEG length (degree of polymerization= 91). We use fluorescent probe to determine the critical micelle concentrations (CMC) of triblock copolymer solutions with various concentrations of calcium chloride and sodium chloride over a temperature range of 23 to 45 degrees centigrade, and determine subsequently thermodynamic parameters of micellization. The micelle size is also measured with dynamic light scattering (DLS), showing the effects of electrolyte species and concentrations on the micelle clustering.
    Experimental results show that critical micelle concentration increases with rising temperature, and decreases with increasing electrolyte concentration. These two effects on CMC are more significant for electrolyte solutions with higher activity (i.e.,NaCl). CMC is lower for copolymers with longer PLLA block, where effects of electrolyte concentration and species on CMC is less pronounced. The salting coefficients are used to signify the salting out in solutions of various electrolytes and block copolymers. This coefficient increases with rising temperature, decreasing hydrophobic block length in copolymers, and decreasing mean radius of ions in electrolytes.
    Calculated thermodynamic parameters of micellization shows that the absolute values of Gibbs energy of micellization, standard entropy of micellization (with positive value) and standard enthalpy of micellization (with negative value) increase with electrolyte concentration, where these three parameters were affected more significantly by sodium chloride than calcium chloride. Moreover, the effects of electrolyte concentration and species on three parameters of micellization were more pronounced for copolymers with shorter hydrophobic blocks. The structural effects of electrolytes and block copolymers were well explained with salting coefficients.
    DLS experiment reveals a more than fourfold increase in average micelle size as electrolyte concentration is raised from 0 to 0.1 M, with the appearance of a population with a greater average size. This clustering of micelles becomes more apparent with electrolyte concentration, as indicated with an increasing average size. Sodium chloride affects the micelle size in the same way as CMC.

    中文摘要..........................................................I 英文摘要........................................................III 誌謝.............................................................V 目錄............................................................VI 圖表索引.......................................................VIII 聚乳酸-聚醚-聚乳酸三團聯共聚物水溶液中自組裝之電解質效應 一、前言..........................................................1 二、實驗方法.......................................................6 2.1 PLLA-PEG-PLLA三團聯共聚物聚合反應...............................6 2.2質子核磁共振光譜分析.............................................7 2.3電解質溶液中臨界微胞濃度測量.......................................7 2.3.1待測臨界微胞濃度之共聚物溶液配製.................................7 2.3.2臨界微胞濃度之測量.............................................8 2.4電解質溶液中微胞粒徑測量..........................................8 2.4.1待測微胞粒徑之共聚物溶液配製.....................................8 2.4.2微胞粒徑測量..................................................9 三、結果與討論.....................................................10 3.1 PLLA-PEG-PLLA三團聯共聚物之組成分析.............................10 3.2 PLLA-PEG-PLLA三團聯共聚物之臨界微胞濃度..........................11 3.2.1溫度與電解質濃度效應...........................................11 3.2.2電解質物種效應................................................13 3.2.3高分子效應...................................................14 3.2.4電解質效應的salting係數.......................................14 3.3 PLLA-PEG-PLLA三團聯共聚物之微胞熱力學性質.........................16 3.3.1電解質物種效應................................................16 3.3.2高分子效應...................................................18 3.4 電解質濃度及物種對PLLA-PEG-PLLA三團聯共聚物微胞粒徑之影響............18 四、結論..........................................................22 五、參考文獻.......................................................24 附錄一 符號表對照...................................................47 附錄二 鹽效應另外一種分析方法.........................................50 附錄三 電解質對微胞化熱力學參數之影響(附圖).............................52 附錄四 利用DLVO理論進一步地說明位能障礙................................58

    1. L. Yang, Z. Zhao, J. Wei, A. El Ghzaoui and S. Li, Micelles Formed by Self-assembling of Polylactide/Poly (ethylene glycol) Block Copolymers in Aqueous Solutions, J. Colloid Interf. Sci., 314, 470-477(2007).
    2. S. Li and M. Vert, Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization of l(d)-Lactide in the Presence of Poly(ethylene glycol), Macromolecules, 36, 8008-8014(2003).
    3. S. Li, Hydrolytic Degradation Characteristics of Aliphatic Polyesters Derived from Lactic and Glycolic Acids, J. Biomed. Mater. Res., 48, 342-353(1999).
    4. Y. Hu, X. Jiang, Y. Ding, L. Zhang, C. Yang, J. Zhang, J. Chen and Y. Yang, Preparation and Drug Release Behaviors of Nimodipine-Loaded Poly (caprolactone)–Poly (ethylene oxide)–Polylactide Amphiphilic Copolymer Nanoparticles, Biomaterials, 24, 2395-2404(2003).
    5. T. Riley, S. Stolnik, C. Heald, C. Xiong, M. Garnett, L. Illum, S. Davis, S. Purkiss, R. Barlow and P. Gellert, Physicochemical Evaluation of Nanoparticles Assembled from Poly (lactic acid)-Poly (ethylene glycol)(PLA-PEG) Block Copolymers as Drug Delivery Vehicles, Langmuir, 17, 3168-3174(2001).
    6. C. Heald, S. Stolnik, K. Kujawinski, C. De Matteis, M. Garnett, L. Illum, S. Davis, S. Purkiss, R. Barlow and P. Gellert, Poly (lactic acid)-Poly (ethylene oxide)(PLA-PEG) Nanoparticles: NMR Studies of the Central Solidlike PLA Core and the Liquid PEG Corona, Langmuir, 18, 3669-3675(2002).
    7. S. Hagan, A. Coombes, M. Garnett, S. Dunn, M. Davies, L. Illum, S. Davis, S. Harding, S. Purkiss and P. Gellert, Polylactide-Poly (ethylene glycol) Copolymers as Drug Delivery Systems. 1. Characterization of Water Dispersible Micelle-Forming Systems, Langmuir, 12, 2153-2161(1996).
    8. K. Kalyanasundaram and J. Thomas, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems, J. Am. Chem. Soc., 99, 2039-2044(1977).
    9. C. L. Zhao, M. A. Winnik, G. Riess and M. D. Croucher, Fluorescence Probe Techniques Used to Study Micelle Formation in Water-Soluble Block Copolymers, Langmuir, 6, 514-516(1990).
    10. M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. L. Mura, G. Riess and M. D. Croucher, Poly (styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study, Macromolecules, 24, 1033-1040(1991).
    11. A. V. Kabanov, I. R. Nazarova, I. V. Astafieva, E. V. Batrakova, V. Y. Alakhov, A. A. Yaroslavov and V. A. Kabanov, Micelle Formation and Solubilization of Fluorescent Probes in Poly (oxyethylene-b-oxypropylene-b-oxyethylene) Solutions, Macromolecules, 28, 2303-2314(1995).
    12. I. Astafieva, X. F. Zhong and A. Eisenberg, Critical Micellization Phenomena in Block Polyelectrolyte Solutions, Macromolecules, 26, 7339-7352(1993).
    13. I. Astafieva, K. Khougaz and A. Eisenberg, Micellization in Block Polyelectrolyte Solutions. 2. Fluorescence Study of The Critical Micelle Concentration as a Function of Soluble Block Length and Salt Concentration, Macromolecules, 28, 7127-7134(1995).
    14. Z. Dai, L. Piao, X. Zhang, M. Deng, X. Chen and X. Jing, Probing the Micellization of Diblock and Triblock Copolymers of Poly (l-lactide) and Poly (ethylene glycol) in Aqueous and NaCl Salt Solutions, Colloid Polym. Sci., 282, 343-350(2004).
    15. V. Aswal and J. Kohlbrecher, Entropy-induced Micellization of Block Copolymer in Aqueous Solution in Presence of Selective Additives, Chem. Phys. Lett., 425, 118-122(2006).
    16. G. Mao, S. Sukumaran, G. Beaucage, M.-L. Saboungi and P. Thiyagarajan, PEO-PPO-PEO Block Copolymer Micelles in Aqueous Electrolyte Solutions: Effect of Carbonate Anions and Temperature on The Micellar Structure and Interaction, Macromolecules, 34, 552-558(2001).
    17. P. Alexandridis and J. F. Holzwarth, Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer), Langmuir, 13, 6074-6082(1997).
    18. T. R. Carale, Q. T. Pham and D. Blankschtein, Salt Effects on Intramicellar Interactions and Micellization of Nonionic Surfactants in Aqueous Solutions, Langmuir, 10, 109-121(1994).
    19. P. Mukerjee, Salt Effects on Nonionic Association Colloids, J. Phys. Chem., 69, 4038-4040(1965).
    20. J. E. Gordon, Salt Effects on the Critical Micelle Concentrations of Nonionic Amphiphiles, J. Phys. Chem., 74, 3823-3824(1970).
    21. Y.-L. Su, X.-F. Wei and H.-Z. Liu, Effect of Sodium Chloride on Association Behavior of Poly (ethylene oxide)–Poly (propylene oxide)–Poly (ethylene oxide) Block Copolymer in Aqueous Solutions, J. Colloid Interf. Sci., 264, 526-531(2003).
    22. N. Pandit, T. Trygstad, S. Croy, M. Bohorquez and C. Koch, Effect of Salts on the Micellization, Clouding, and Solubilization Behavior of Pluronic F127 Solutions, J. Colloid Interf. Sci., 222, 213-220(2000).
    23. L. Zhang and A. Eisenberg, Morphogenic Effect of Added Ions on Crew-cut Aggregates of Polystyrene-b-Poly (acrylic acid) Block Copolymers in Solutions, Macromolecules, 29, 8805-8815(1996).
    24. D. J. Adams, M. F. Butler and A. C. Weaver, Effect of Block Length, Polydispersity, and Salt Concentration on PEO-PDEAMA Block Copolymer Structures in Dilute Solution, Langmuir, 22, 4534-4540(2006).
    25. E. Beaudoin, C. Gourier, R. C. Hiorns and J. Francois, Structure and Properties of Hydrophobically End-capped Poly (ethylene oxide) Solutions in the Presence of Monovalent and Divalent Cations, J. Colloid Interf. Sci., 251, 398-408(2002).
    26. N. Jain, V. Aswal, P. Goyal and P. Bahadur, Salt Induced Micellization and Micelle Structures of PEO/PPO/PEO Block Copolymers in Aqueous Solution, Colloids Surf., A, 173, 85-94(2000).
    27. D. C. Dong and M. A. Winnik, The Py Scale of Solvent Polarities, Can. J. Chemistry, 62, 2560-2565(1984).
    28. H.-G. Lee, Chemical Thermodynamics for Metals and Materials, Imperial College Press, London, Ch. 5, 1999.
    29. W. L. Masterton and T. P. Lee, Salting Coefficients from Scaled Particle Theory, J. Phys. Chem., 74, 1776-1782(1970).
    30. P. Debye and J. McAulay, Das elektrische Feld der Ionen und die Neutralsalzwirkung, Physik. Z, 26, 22-29(1925).
    31. B. E. Conway, J. E. Desnoyers and A. Smith, On the Hydration of Simple Ions and Polyions, Philos. Trans. R. Soc. London, Ser. A, 389-437(1964).
    32. W. McDevit and F. Long, The Activity Coefficient of Benzene in Aqueous Salt Solutions, J. Am. Chem. Soc., 74, 1773-1777(1952).
    33. J. M. Bockris, J. Bowler-Reed and J. Kitchener, The Salting-in Effect, Trans. Faraday Soc., 47, 184-192(1951).
    34. W. Masterton and R. N. Schwartz, The Activity Coefficient of Trinitrotriamminecobalt (III) in Aqueous Salt Solutions, J. Phys. Chem., 69, 1546-1549(1965).
    35. B. Chu and Z. Zhou, In Nonionic surfactants, edited by Martin J. Schick, Marcel Dekker, Inc., New York, 1967.
    36. A. Holtzer and M. F. Holtzer, Use of the van't Hoff Relation in Determination of the Enthalpy of Micelle Formation, J. Phys. Chem., 78, 1442-1443(1974).
    37. D. Attwood and A. T. Florence, Surfactant Systems: Their Chemistry, Pharmacy, and Biology, Chapman & Hall, London, Ch.3, 1983.
    38. G. Pilcher, M. Jones, L. Espada and H. Skinner, Enthalpy of Micellization I. Sodium n-dodecylsulphate, J. Chem. Thermodyn., 1, 381-392(1969).
    39. K. Mukherjee, S. Moulik and D. Mukherjee, Thermodynamics of Micellization of Aerosol OT in Polar and Nonpolar Solvents. A Calorimetric Study, Langmuir, 9, 1727-1730(1993).
    40. P. C. Hiemenz, Principles of Colloid and Surface Chemistry. Second Edition., Marcel Dekker, Ch.12, 1986.
    41. J. N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition, Academic Press, Ch. 14, 2011.

    QR CODE