簡易檢索 / 詳目顯示

研究生: 雷雅鈞
Ya-Chun Lei
論文名稱: 設計與合成應用於標記二級胺的1,2,3-三嗪螢光響應探針
Design and Synthesis of 1,2,3-Triazine-based Fluorogenic Probes for Labeling of Secondary Amines
指導教授: 何郡軒
Jinn-Hsuan Ho
謝俊結
Jiun-Jie Shie
口試委員: 謝俊結
Jiun-Jie Shie
何俊軒
Jinn-Hsuan Ho
李賢明
Hsien-Ming Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 93
中文關鍵詞: 1,2,3-三嗪BODIPY二級胺螢光探針
外文關鍵詞: 1,2,3-triazine, BODIPY, secondary amines, fluorescent probes
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二級胺常見於自然界及生物體內,例如生物細胞內利用蛋白質離胺酸甲基轉移酶和脫甲基酶之間的平衡反應進行調節蛋白質中離胺酸甲基化的基質和程度(單甲基、二甲基、三甲基)。這種甲基酶反應平衡的失調通常與神經系統疾病、發育異常或癌症等疾病狀態相關。因此,本文設計了可用於標定二級胺的螢光響應探針:1,2,3–三嗪–BODIPY衍生物。利用簡單且溫和的反應條件,二級胺可以與1,2,3–三嗪發生反應,藉由破壞螢光淬滅基團——1,2,3–三嗪的機制,誘使BODIPY的螢光團發光。在一系列分子中,p-TZ-H、p-TZ-Et及m-TZ-Et與二級胺(N-甲基丁胺、吡咯烷)反應後亮度明顯提高。因此我們認為1,2,3-三嗪-BODIPY衍生物未來有機會用於二級胺基酸的標定上。


    Secondary amines are commonly found in nature and organisms. For example, the balance reaction between protein lysine methyltransferase and demethylase is used in biological cells to regulate the substrate and degree of lysine methylation in proteins (monomethyl, dimethyl, trimethyl). Disturbances in the balance of this methylase reaction are often associated with disease states such as neurological disorders, developmental abnormalities, or cancer. Therefore, this project designed a series of 1,2,3-triazine based BODIPY derivatives as a fluorescent response probe that can be used to calibrate secondary amines. By using simple and mild reaction conditions, secondary amines can react with 1,2,3-triazine to induce fluorescent intensity of BODIPY by destroying the mechanism of the fluorescent quenching group 1,2,3-triazine. Among a series of molecules, p-TZ-H, p-TZ-Et and m-TZ-Et significantly increased their brightness after reacting with secondary amines (N-methylbutylamine, pyrrolidine). Therefore, we believe that 1,2,3-triazine-BODIPY derivatives have the opportunity to be used in the calibration of secondary amino acids in the future.

    摘要 ................................... IV ABSTRACT ....................... V 致謝 ................................... VI 目錄 .................................. VII 圖目錄 ............................... IX 表目錄 ................................. X 縮寫表 ............................... XI 第一章 緒論 ......................... 1 一、甲基化離胺酸的基本介紹 ............................. 1 二、螢光探針之發展 ..... 1 三、螢光染料種類 ......... 2 (一)學術研究中常用螢光染料 ..................... 4 (二)BODIPY 螢光探針的性質與發展 ......... 7 四、1,2,4,5–四嗪、1,2,4–三嗪與 1,2,3–三嗪 ...... 10 五、文獻回顧 ............... 12 六、分子設計 ............... 14 第二章 結果與討論 ........... 16 ㄧ、1,2,3–三嗪–BODIPY 衍生物合成路徑 ........ 16 (一)三嗪–BODIPY 反應路徑一 ................. 17 (二)三嗪–BODIPY 反應路徑二 ................. 18 (三)三嗪–BODIPY 反應路徑三 ................. 19 二、鈴木反應條件測試 ....................................... 20 三、三嗪–BODIPY 衍生物與 N–甲基丁胺的反應 ......................... 23 四、三嗪–BODIPY 衍生物與吡咯烷的反應 ...... 27 五、探針的吸收/放射光譜分析 ..................... 28 (一)溶液配製 ...... 28 (二)吸收/放射光譜分析 ............................. 28 (三)定時掃描螢光分析 ............................... 32 六、結論 ....................... 33 第三章 實驗部分 ............... 35 ㄧ、實驗儀器 ............... 35 (一)核磁共振光譜儀 ................................... 35 (二)高解析質譜儀....................................... 35 (三)紫外-可見光光譜儀 ............................. 36 (四)分光光度計 .. 36 二、藥品 ....................... 36 (一)薄層色層分析....................................... 36 (二)管柱色層分析....................................... 37 三、合成步驟 ............... 37 參考資料 ............................ 61 附錄 核磁共振光譜 ........... 65

    1. Luo, M. “Chemical and Biochemical Perspectives of Protein Lysine Methylation.”Chem. Rev. 2018, 118, 6656‒6705.
    2. Srinivasarao, M.; Low, P.-S. “Ligand-Targeted Drug Delivery.” Chem. Rev. 2017,117, 12133‒12164.
    3. Lacivita, E.; Leopoldo, M.; Berardi, F.; Colabufo, N.-A.; Perrone, R. “Activatable fluorescent probes: a new concept in optical molecular imaging.” Curr. Med. Chem. 2012, 19, 4731‒4741.
    4. Hopkins, A.-L.; Groom, C.-R. “The druggable genome.” Nat. Rev. Drug. Discov. 2002, 1, 727‒730.
    5. Macarron, R.; Banks, M.-N.; Bojanic, D.; Burns, D.-J.; Cirovic, D.-A.; Garyantes, T.; Green, D.-V.-S.; Hertzberg, R.-P.; Janzen, W.-P.; Paslay, J.-W.; et al. “Impact of high-throughput screening in biomedical research.” Nat. Rev. Drug. Discov. 2011, 10, 188‒195.
    6. Paul, S.-M.; Mytelka, D.-S.; Dunwiddie, C.-T.; Persinger, C.-C.; Munos, B.-H.;
    Lindborg, S.-R.; Schacht, A.-L. “How to improve R&D productivity: the pharmaceutical industry's grand challenge.” Nat. Rev. Drug. Discov. 2010, 9, 203‒214.
    7. Johnson, D.-S.; Weerapana, E.; Cravatt, B.-F. “Strategies for discovering and derisking covalent, irreversible enzyme inhibitors.” Future Med. Chem. 2010, 2, 949‒964.
    8. Zhao, Q.; Ouyang, X.; Wan, X.; Gajiwala, K.-S.; Kath, J.-C.; Jones, L.-H.;
    Burlingame, A.-L.; Taunton, J. “Broad-Spectrum Kinase Profiling in Live Cells
    with Lysine-Targeted Sulfonyl Fluoride Probes.” J. Am. Chem. Soc. 2017, 139,
    680‒685.
    9. Mortenson, D.-E.; Brighty, G.-J.; Plate, L.; Bare, G.; Chen, W.; Li, S.; Wang, H.;
    Cravatt, B.-F.; Forli, S.; Powers, E.-T.; et al. “Inverse Drug Discovery” Strategy
    to Identify Proteins That Are Targeted by Latent Electrophiles as Exemplified by
    Aryl Fluorosulfates.” J. Am. Chem. Soc. 2018, 140, 200‒210.
    10. Shannon, D.-A.; Banerjee, R.; Webster, E.-R.; Bak, D.-W.; Wang, C.; Weerapana, E. “Investigating the Proteome Reactivity and Selectivity of Aryl Halides.” J. Am. Chem. Soc. 2014, 136, 3330‒3333.
    11. Choi, S.; Connelly, S.; Reixach, N.; Wilson, I.-A.; Kelly, J.-W. “Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma.” Nat. Chem. Biol. 2010, 6, 133‒139.
    12. Tamura, T.; Ueda, T.; Goto, T.; Tsukidate, T.; Shapira, Y.; Nishikawa, Y.;
    Fujisawa, A.; Hamachi, I. “Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide.” Nat. Commun. 2018, 9, 1870.
    13. Suh, E.-H.; Liu, Y.; Connelly, S.; Genereux, J.-C.; Wilson, I.
    -A.; Kelly, J.-W. “Stilbene Vinyl Sulfonamides as Fluorogenic Sensors of and Traceless Covalent Kinetic Stabilizers of Transthyretin That Prevent Amyloidogenesis.” J. Am. Chem. Soc. 2013, 135, 17869‒17880.
    14. Hunter, M.-J.; Ludwig, M.-L. “The Reaction of Imidoesters with Proteins and
    Related Small Molecules.” J. Am. Chem. Soc. 1962, 84, 3491‒3504.
    15. Nakamura, T.; Kawai, Y.; Kitamoto, N.; Osawa, T.; Kato, Y. “Covalent
    Modification of Lysine Residues by Allyl Isothiocyanate in Physiological
    Conditions: Plausible Transformation of Isothiocyanate from Thiol to Amine.”
    Chem. Res. Toxicol. 2009, 22, 536‒542.
    16. Metcalf, B.; Chuang, C.; Dufu, K.; Patel, M.-P.; Silva-Garcia, A.; Johnson, C.; Lu, Q.; Partridge, J.-R.; Patskovska, L.; Patskovsky, Y.; et al. “Discovery of GBT440, an Orally Bioavailable R-State Stabilizer of Sickle Cell Hemoglobin.”
    . ACS Med. Chem. Lett. 2017, 8, 321‒326.
    17. Akçay, G.; Belmonte, M.-A.; Aquila, B.; Chuaqui, C.; Hird, A.-W.; Lamb, M. L.; Rawlins, P.-B.; Su, N.; Tentarelli, S.; Grimster, N.-P.; et al. “Inhibition of Mcl-1
    through covalent modification of a noncatalytic lysine side chain.” Nat. Chem. Biol. 2016, 12, 931‒936.
    18. Pettinger, J.; Le Bihan, Y.-V.; Widya, M.; van Montfort, R.-L.; Jones, K.;
    Cheeseman, M.-D. “An Irreversible Inhibitor of HSP72 that Unexpectedly Targets Lysine-56.” Angew. Chem. Int. Ed. Engl. 2017, 56, 3536‒3540.
    19. Grimm, J.-B.; Lavis, L.-D. “Caveat fluorophore: an insiders’ guide to small-
    molecule fluorescent labels.” Nat. Methods. 2022, 19, 149‒-158.
    20. Beija, M.; Afonso, C.-A.-M.; Martinho, J.-M.-G. “Synthesis and applications of Rhodamine derivatives as fluorescent probes.” Chem. Soc. Rev. 2009, 38, 2410‒2433.
    21. Duan, Y.; Liu, M.; Sun, W.; Wang, M.; Liu, S.; Li, X.-Q. “Recent Progress on
    Synthesis of Fluorescein Probes.” J. Org. Chem. 2009, 6, 35‒43.
    22. Sarmah, M.; Chutia, K.; Dutta, D.; Gogoi, P. “Overview of coumarin-fused-
    coumarins: synthesis, photophysical properties and their applications.” Org.
    Biomol. Chem. 2022, 20, 55‒72.
    23. Kumar, K.; Nagamallu, R.; Pavithra, G.; Govindappa, V.-K. “Comprehensive review on coumarins: Molecules of potential chemical and pharmacological interest.” J. Chem. Pharm. Res. 2015, 2015, 67‒81.
    24. Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. “Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity.” Curr. Med. Chem. 2005, 12, 887‒916.
    25. Duke, R.-M.; Veale, E.-B.; Pfeffer, F.-M.; Kruger, P.-E.; Gunnlaugsson, T.
    “Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors.” Chem. Soc. Rev. 2010, 39, 3936‒3953.
    26. Shindy, H. A. “Fundamentals in the chemistry of cyanine dyes: A review.” Dyes Pigm. 2017, 145, 505‒513.
    27. Gopika, G.-S.; Prasad, P.-M.-H.; Lekshmi, A.-G.; Lekshmypriya, S.; Sreesaila, S.; Arunima, C.; Kumar, M.-S.; Anil, A.; Sreekumar, A.; Pillai, Z.-S. “Chemistry of
    cyanine dyes-A review.” Mater. Today: Proceedings. 2021, 46, 3102‒3108.
    28. Treibs, A.; Kreuzer, F.-H. “Difluorboryl-Komplexe von Di-und Tripyrrylmethenen.” Liebigs Ann. 1968, 718, 208‒223.
    29. Wories H.-J.; Koek J.-H.; Lodder G.; Lugtenburg J.; Fokkens R.; Driessen O.; et al. “A novel water-solble florescent probe: Synthesis luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3’,5,5’-tetramethyl-2,2’-pyrromethen-1,1’-BF2 complex.” Recl. Trav. Chim. Pays-Bas. 1985, 104, 288‒291.
    30. Kang H. C.; Haugland R. P. “Dibenzopyrrometheneboron difluoride dyes.” US5433896. 1995. A.
    31. Jurasek M.; Rimpelova S.; Pavlickova V.; Ruml T.; Lapcik O. and Drasar P.-B.
    “Synthesis and Biological Evaluation of Nandrolone-bodipy Conjugates.”
    Steriods. 2015, 97, 62‒66.
    32. Li, M.; Wang, H.; Zhang, X.; Zhang, H.-S. “Development of a new fluorescent probe: 1,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacence for the determination of trace nitrite.” Spectrochim. 2004, 60, 987‒993.
    33. Zhang, X.; Zhang, H.-S. “Design, synthesis and characterization of a novel
    fluorescent probe for nitric oxide based on difluoroboradiaza-s-indacene
    fluorophore”. Spectrochim. 2005, 61, 1045‒1049.
    34. Zhang, X.; Wang, H.; Li, J.-S.; Zhang, H.-S. “Development of a fluorescent probe for nitric oxide detection based on difluoroboradiaza-s-indacene fluorophore.” Anal. Chim. Acta. 2003, 481, 101‒108.
    35. Oleynik, P.; Ishihara, Y.; Cosa, G. “Design and Synthesis of a BODIPY-α-
    Tocopherol Adduct for Use as an Off/On Fluorescent Antioxidant Indicator.” J. Am. Chem. Soc. 2007, 129, 1842‒1843.
    36. Zhang, X.; Wang, H.; Li, J.-S.; Zhang, H.-S. “Development of a fluorescent probe for nitric oxide detection based on difluoroboradiaza-s-indacene fluorophore.”Anal. Chim. Acta. 2003, 481, 101‒108.
    37. Werner, T.; Huber, C.; Heinl, S.; Kollmannsberger, M.; Daub, J.; Wolfbeis, O. S. “Novel optical pH-sensor based on a boradiaza-indacene derivative.” Fresenius' J. Anal. Chem. 1997, 359, 150‒154.
    38. Baki, C.-N.; Akkaya, E.-U. “Boradiazaindacene-Appended Calix[4]arene:
    Fluorescence Sensing of pH Near Neutrality.” J. Org. Chem. 2001, 66, 1512‒
    1513.
    39. Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Joong Hong, J. S.; Yoon, Y. J.; Yoon, J.
    “New BODIPY Derivatives as OFF−ON Fluorescent Chemosensor and
    Fluorescent Chemodosimeter for Cu2+: Cooperative Selectivity Enhancement toward Cu2+.” J. Org. Chem. 2006, 7, 2881‒2884.
    40. Bricks, J.-L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Büschel, M.; Tolmachev,
    A.-I.; Daub, J.; Rurack, K. “On the development of sensor molecules that display Fe(III)-amplified fluorescence.” J. Am. Chem. Soc. 2005, 127, 13522‒13529.
    41. Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. “Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells.” Org. Biomol. Chem. 2005, 3, 1387‒1392.
    42. Martin, V.-V.; Rothe, A.; Gee, K.-R. “Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions.” Bioorg. Med. Chem. Lett. 2005, 15, 1851‒1855.
    43. Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. “A Selective and Sensitive Fluoroionophore for HgII, AgI, and CuII with Virtually Decoupled
    Fluorophore and Receptor Units.” J. Am. Chem. Soc. 2000, 122, 968‒969.
    44. Wang, J.; Qian, X. “A Series of Polyamide Receptor Based PET Fluorescent
    Sensor Molecules: Positively Cooperative Hg2+ Ion Binding with High
    Sensitivity.” Org. Lett. 2006, 8, 3721‒3724.
    45. Mei, Y.; Bentley, P.-A.; Wang, W. “A selective and sensitive chemosensor for Cu2+ based on 8-hydroxyquinoline.” Tetrahedron Lett. 2006, 47, 2447‒2449.
    46. Kim, H.; Kim, J. “BODIPY appended cone-calix[4]arene: selective fluorescence changes upon Ca2+ binding.” Tetrahedron Lett. 2006, 47, 7051‒7055.
    47. Basarić, N.; Baruah, M.; Qin, W.; Metten, B.; Smet, M.; Dehaen, W.; Boens, N.“Synthesis and spectroscopic characterisation of BODIPY® based fluorescent off–on indicators with low affinity for calcium.” Org. Biomol. Chem. 2005, 3, 2755‒2761.
    48. Li, J.-S.; Wang, H.; Huang, K.-J.; Zhang, H.-S. “Determination of biogenic amines in apples and wine with 8-phenyl-(4-oxy-acetic acid N-hydroxysuccinimide ester)-4, 4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene by high performance liquid chromatography.” Ana. Chim. Acta. 2006, 575, 255‒261.
    49. DiCesare, N.; Lakowicz, J.-R. “Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group.” Tetrahedron Lett. 2001, 42, 9105‒9108.
    50. Kamber, D.-N.; Liang, Y.; Blizzard, R. -.; Liu, F.; Mehl, R.-A.; Houk, K.-N.;
    Prescher, J.-A. “1,2,4-Triazines Are Versatile Bioorthogonal Reagents.” J. Am.
    Chem. Soc. 2015, 137, 838‒8391.
    51. Wieczorek, A.; Werther, P.; Euchner, J.; Wombacher, R. “Green- to far-red-emitting fluorogenic tetrazine probes – synthetic access and no-wash protein imaging inside living cells.” Chem. Sci. 2017, 8, 1506‒1510.
    52. Carlson, J.-C.-T.; Meimetis, L.-G.; Hilderbrand, S.-A.; Weissleder, R. “BODIPY–Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes.” Angew. Chem. Int. Ed. Engl. 2013, 52, 6917‒6920.
    53. Siegl, S.-J. and Vrabel, M. “Probing the Scope of the Amidine–1,2,3-triazine Cycloaddition as a Prospective Click Ligation Method.” Eur. J. Org. Chem. 2018, 2018, 5081‒5085.
    54. Carlson, J.-C.-T.; Meimetis, L.-G.; Hilderbrand, S.-A.; Weissleder, R.
    “BODIPY–Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes.” Angew. Chem. Int. Ed. Engl. 2013, 52, 6917‒6920.
    55. Quiñones, R.-E.; Glinkerman, C.-M.; Zhu, K.; Boger, D.-L. “Direct Synthesis of
    β-Aminoenals through Reaction of 1,2,3-Triazine with Secondary Amines.” Org. Lett. 2017, 19, 3568‒3571.
    56. Ou Yang, C.-H.; Liu, W.-H.; Yang, S.; Chiang, Y.-Y.; Shie, J.-J. “Copper-
    Mediated Synthesis of (E)-β-Aminoacrylonitriles from 1,2,3-Triazine and
    Secondary Amines.” Eur. J. Org. Chem. 2022, 2022, e202200209.

    無法下載圖示 全文公開日期 2029/01/24 (校內網路)
    全文公開日期 2029/01/24 (校外網路)
    全文公開日期 2029/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE