簡易檢索 / 詳目顯示

研究生: 温適豪
Shih-Hao Wen
論文名稱: 以開環歧化聚合合成聚亞芳香基乙烯之衍生物及光學與電化學性質之探討
Poly(arylenevinylene) Derivatives by Ring-Opening Metathesis Polymerization and Their Optical and Electrochemical Properties
指導教授: 游進陽
Chin-Yang Yu
口試委員: 陳志堅
Jyh-Chien Chen
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 95
中文關鍵詞: 聚萘乙烯對萘二烯嵌段共聚物隨機共聚物均聚物開環歧化聚合
外文關鍵詞: ring opening metathesis polymerization, block copolymer, poly(naphthylenevinylene), homopolymer, naphthalenophanediene, random copolymer
相關次數: 點閱:320下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目標在於合成一系列含烷氧基取代之聚亞芳香基乙烯及其衍生物,我們使用對苯乙烯及新開發的對萘乙烯做為起始物,這種具有高度環張力的分子可在第三代格拉布釕基催化劑的引發反應之下進行開環歧化聚合,得到聚對苯乙烯及聚對萘乙烯之均聚物,具有低分散性、低缺陷,且分子量可藉由單體及催化劑之比例精密控制。同時,聚亞芳香基乙烯之隨機共聚物及嵌段共聚物也使用了此兩種單體合成得到,具有良好分散性且不同的嵌段長度得以控制。我們對這一系列的均聚物、隨機共聚物及嵌段共聚物的結構、光學及電化學性質做了詳細的量測與探討,結果顯示高分子不僅溶解度好、成膜性佳而且具有良好的光電性質。在未來應用至有機發光二極體或有機場效電晶體等光電元件上是大有潛力的。


    The alkoxy substituted arylenevinylene polymers can be prepared by ring-opening metathesis polymerization (ROMP) of strained monomers such as tetraalkoxy substituted cyclophanediene and naphthalenophanediene initiated by ruthenium carbene complexes. The resulting homopolymers exhibited low polydispersities, defect free and the molecular weights of polymers can be tightly controlled by changing the monomer to catalyst ratio. Arylenevinylene block copolymers can also be synthesized by the sequential ring-opening metathesis polymerization of two individual monomers. The molecular weight distribution of the block copolymers is low and the volume fraction of the individual blocks independently tailored by the ratio of the monomers employed. The optical and electrochemical properties of the homopolymers and the block copolymers were investigated and exhibited the potential uses in optoelectronics devices.

    Abstract Ⅰ 中文摘要 Ⅱ Acknowledgement Ⅲ Table of contents Ⅳ List of figures Ⅶ Chapter 1. Introduction and Aims 1 1.1 Introduction 2 1.1.1 Introduction of conjugated polymers 2 1.1.2 Polymeric light emitting diode 2 1.1.3 Poly(phenylenevinylene) 3 1.2. Living Ring Opening Metathesis Polymerization 5 1.2.1 Olefin metathesis 5 1.2.2 Chemistry of living ROMP 5 1.2.3 The initiator for living ROMP 7 1.2.4 Poly(arylenevinylene) through living ROMP 9 1.3. Aims of the project 10 1.4 References 11 Chapter 2. Synthesis and characterization of naphthalene-based monomers 13 2.1 Cyclophane and Cyclophanediene 14 2.2 Synthesis and characterization 15 2.2.1 2,6-bis(bromomthyl)-1,5-dioctyloxynaphthalene and 2,6-bis(mercaptomethyl)- 1,5-dioctyloxynaphthalene 15 2.2.2 Tetraoctyloxy-substituted dithia[3.3]naphthalenephane 18 2.2.3 Tetraoctyloxy-substituted naphthalenephandiene 22 2.3 References 27 Chapter 3. Preparation and Characterisation of Arylenevinylene Homopolymers, Random copolymers and Block copolymers via ROMP 28 3.1 Synthesis of homopolymers 29 3.1.1 Synthesis of poly(2,5-dioctyloxy-naphthylenevinylene)s (P3.1) 29 3.1.2 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)s (P3.2) 31 3.2 Synthesis of copolymers 33 3.2.1 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)-random- (2,6-dioctyloxynaphthylenevinylene) (P3.3) 33 3.2.2 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)-block- (2,6-dioctyloxynaphthylenevinylene) (P3.4 – P3.7) 35 3.3 Comparison of 2nd and 3rd Grubb’s catalyst 37 3.4 Properties of homopolymers and block copolymers 39 3.4.1 Optical properties 39 3.4.2 Electrochemical properties 45 3.4.3 Thermal bevavior 48 3.5 References 52 Chapter 4. Conclusion 53 Chapter 5. Experimental 55 5.1 General procedures 56 5.2 Synthesis 57 5.2.1 Synthesis of cyclophandiene-based monomer 57 5.2.1.1 Synthesis of 5,8,14,17-tetraoctyloxy-2,11-dithia [3.3] paracyclophane (2.1a) and 6,9,14,17-tetraoctyloxy-2,11- dithia[3.3]paracyclophane (2.1b) 57 5.2.1.2 Synthesis of compound (2.2) 58 5.2.1.3 Synthesis of compound (2.3) 59 5.2.1.4 Synthesis of 4,7,12,15-tetraoctyloxy-[2.2]paracyclophane-1,9- diene (2.4a) and 5,8,12,15-tetraoctyloxy-[2.2]paracyclophane-1,9-diene (2.4b) 60 5.2.1.5 Synthesis of 2,6-dibromo-1,5-dihydroxynaphthalene (2.5) 61 5.2.1.6 Synthesis of 2,6-dibromo-1,5-dioctyloxynaphthalene (2.6) 61 5.2.1.7 Synthesis of 2,6-formyl-1,5-dioctyloxynaphthalene (2.7) 62 5.2.1.8 Synthesis of 2,6-bis(hydroxymethyl)-1,5-dioctyloxynaphthalene (2.8) 63 5.2.1.9 Synthesis of 2,6-bis(bromomthyl)-1,5-dioctyloxynaphthalene (2.9) 64 5.2.1.10 Synthesis of 2,6-bis(mercaptomethyl)-1,5-dioctyloxy naphthalene (2.10) 64 5.2.1.11 Synthesis of 5,9,16,20-tetraoctyloxy-2,11-dithia [3.3] paranaphthalenephane (2.11) 65 5.2.1.12 Synthesis of compound (2.12) 66 5.2.1.13 Synthesis of compound (2.13) 67 5.2.1.14 Synthesis of 4,8,14,18-tetraoctyloxy- [2.2] paranaphthalenephane -1,11- diene (2.14a) and 4,8,16,20-tetraoctyloxy-[2.2 ] naphthalenephane- 1,11-diene (2.14b) 68 5.2.2 Synthesis of homopolymer 69 5.2.2.1 Synthesis of poly(2,6-dioctyloxynaphthylenevinylene)s (P3.1) 69 5.2.2.2 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)s (P3.2) 70 5.2.3 Synthesis of Copolymers 71 5.2.3.1 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene) –random -(2,6-dioctyloxynaphthylenevinylene) (P3.3) 71 5.2.3.2 Synthesis of poly(2,5-dioctyloxy-p-phenylenevinylene)-block -(2,6-dioctyloxynaphthylenevinylene) (P3.4-P3.7) 72 Appendix 74 1. 1H,13C, COSY and HSQC NMR Spectra 74 2. Mass Spectroscopy 87 List of Figures Figure 1.1 Contemporary process of PLED 3 Figure 2.1 X-ray crystal structure of tetrasubstituted[2.2]paracyclophane-1,9-diene 14 Figure 2.2 The 1H NMR spectrum of 2.9 17 Figure 2.3 The 1H NMR spectrum of 2.10. 18 Figure 2.4 The 1H NMR spectrum of 2.11 20 Figure 2.5 The 1H-1H COSY 2D NMR spectrum of 2.11 21 Figure 2.6a The HSQC 2D NMR spectrum of 2.11 21 Figure 2.6b The HSQC 2D NMR spectrum of 2.11 22 Figure 2.7 The 1H NMR spectrum of 2.14 25 Figure 2.8 The 1H-1H COSY 2D NMR spectrum of 2.14 26 Figure 2.9 The HSQC 2D NMR spectrum of 2.14 26 Figure 3.1 1H NMR spectra of monomer 2.14a (top) and polymer P3.1. 30 Figure 3.2 1H NMR of monomer 2.4 (top) and P3.2 (bottom) 32 Figure 3.3 1H NMR of monomer 2.4 (top), 2.14(middle) and P3.3 (bottom) 34 Figure 3.4 1H NMR spectra of P3.4 - P3.7 (from top to bottom). 36 Figure 3.5 Solution UV-vis spectra of P3.1 to P3.7 40 Figure 3.6 Solution PL spectra of P3.1 to P3.7 41 Figure 3.7 Solid state UV-vis spectra of P3.1 to P3.7 42 Figure 3.8 Solid state PL spectra of P3.1 to P3.7 43 Figure 3.9 Energy transfer of copolymers P3.3 to P3.7 43 Figure 3.10 Cyclic voltammograms of polymers P3.1 to P3.7 in films 46 Figure 3.11 Energy level diagrams of P3.1 to P3.7 47 Figure 3.12 Thermogravimetric analysis of P3.1 – P3.7 in atmosphere 49 Figure 3.13 Differential scanning calorimetry of P3.1 to P3.7 under a nitrogen atmosphere 51 Figure A1 1H spectrum of compound (2.1a) 75 Figure A2 13C spectrum of compound (2.1a) 75 Figure A3 1H spectrum of compound (2.1b) 76 Figure A4 13C spectrum of compound (2.1b) 76 Figure A5 1H spectrum of compound (2.4a) 77 Figure A6 13C spectrum of compound (2.4a) 77 Figure A7 1H-1H COSY spectrum of compound (2.4a) 78 Figure A8 HSQC spectrum of compound (2.4a) 78 Figure A9 1H spectrum of compound (2.4b) 79 Figure A10 13C spectrum of compound (2.4b) 79 Figure A11 1H spectrum of compound (2.9) 80 Figure A12 13C spectrum of compound (2.9) 80 Figure A13 1H spectrum of compound (2.10) 81 Figure A14 13C spectrum of compound (2.10) 81 Figure A15 1H spectrum of compound (2.11) 82 Figure A16 13C spectrum of compound (2.11) 82 Figure A17 1H-1H COSY spectrum of compound (2.11) 83 Figure A18 HSQC spectrum of compound (2.11) 83 Figure A19 1H spectrum of compound (2.14a) 84 Figure A20 13C spectrum of compound (2.14a) 84 Figure A21 1H-1H COSY spectrum of compound (2.14a) 85 Figure A22 HSQC spectrum of compound (2.14a) 85 Figure A23 1H spectrum of compound (2.14b) 86 Figure A24 13C spectrum of compound (2.14b) 86 Figure A25 High resolution EI mass spectrum of compound (2.1a) 88 Figure A26 High resolution EI mass spectrum of compound (2.1b) 88 Figure A27 High resolution EI mass spectrum of compound (2.4a) 89 Figure A28 High resolution EI mass spectrum of compound (2.4b) 89 Figure A29 High resolution EI mass spectrum of compound (2.9) 90 Figure A30 High resolution EI mass spectrum of compound (2.10) 90 Figure A31 High resolution EI mass spectrum of compound (2.11) 91 Figure A32 High resolution EI mass spectrum of compound (2.14a) 91 Figure A33 High resolution EI mass spectrum of compound (2.14b) 92 Figure A34 MALDI-TOF mass spectrum of polymer P3.1 92 Figure A35 MALDI-TOF mass spectrum of polymer P3.2 93 Figure A36 MALDI-TOF mass spectrum of polymer P3.3 93 Figure A37 MALDI-TOF mass spectrum of polymer P3.4 94 Figure A38 MALDI-TOF mass spectrum of polymer P3.5 94 Figure A39 MALDI-TOF mass spectrum of polymer P3.6 95 Figure A40 MALDI-TOF mass spectrum of polymer P3.7 95 List of Schemes Scheme 1.1 Traditional preparation of PPV 4 Scheme 1.2 Representative metathesis polymerization 5 Scheme 1.3 General mechanism of ROMP reaction 6 Scheme 1.4 Chain transfer reactions accompanied in ROMP 7 Scheme 1.5 Preparation of (a) Grubb’s 1st generation, (b) Grubb’s 2nd generation and Grubb’s 3rd generation 8 Scheme 1.6 ROMP routes to PPV : (a) Mo catalyst; (b) Bu4NF; (c) HCl(g) ; (d) 105 °C; (e) 280 °C; (f) W catalyst 9 Scheme 1.7 ROMP of cyclophanediene to give monodisperse, soluble PPVs 10 Scheme 2.1 Synthesis of 2,6-bis(bromomthyl)-1,5-dioctyloxynaphthalene (2.9) and 2,6-bis(mercaptomethyl)-1,5-dioctyloxynaphthalene(2.10) 16 Scheme 2.2 Synthesis of Tetraoctyloxy-substituted dithia[3.3]naphthalenephane (2.11). 19 Scheme 2.3 Synthesis of tetraoctyloxy-substituted naphthalenophandiene (2.14) 24 List of Tables Table 3.1 Molecular weight data for P3.1 and P3.2 31 Table 3.2 Molecular weight data for P3.3 34 Table 3.3 Molecular weight data for P3.4, P3.5, P3.6 and P3.7 37 Table 3.4 Comparison of results initiate by two kinds of catalyst 38 Table 3.5 Optical Properties of P3.1to P3.7 44 Table 3.6 Electrochemical properties of P3.1 to P3.7 48

    Chapter 1
    [1] P. K. Ho, D. S. Thomas, R. H. Friend, N. Tessler, Science, 1999, 285, 233
    [2] A. Moliton, R. C. Hiorns, Polym Int. 2004, 53, 1397
    [3] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed. 1998, 37, 402.
    [4] R. E. Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38, 1350
    [5] W.J. Feast, J. Tsibouklis, K.L. Pouwer, L. Groenendaal, E.W. Meijer, Polymer. 1996, 37, 5017
    [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature. 1990, 347, 539.
    [7] N. Calderon, E. A. Ofstead, J. P. Ward, W. A. Judy, K. W. Scott, J. Am. Chem. Soc. 1968, 90, 4133.
    [8] N. Calderon, Acc. Chem. Res. 1972, 5, 127.
    [9] R. H. Grubbs, Angew. Chem. 2006, 118, 3845.
    [10] R. R. Schrock, Angew. Chem. 2006, 118, 3832.
    [11] Y. Chauvin, Angew. Chem. 2006, 118, 3824.
    [12] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym J, 2010, 42, 905.
    [13] C. W. Bielawski, R.H. Grubbs / Prog. Polym. Sci, 2007, 32, 1.
    [14] Herisson, J. L.; Chauvin, Y. Makromol Chem 1971;141:161–76..
    [15] P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. Int. Ed, 1995, 34, 2039
    [16] Herrmann, W. A. & Kocher, C. Angew. Chem. Int. Ed, 1997, 36, 2162
    [17] R. H. Grubbs, Angew. Chem. Int. Ed. 2002, 41, 4035
    [18] T. L. Choi, R. H. Grubbs, Angew. Chem. Int. Ed. 2003, 42, 1743
    [19] Y. J. Miao, G. C. Bazan, J. Am. Chem. Soc 1994,116, 9379-9380
    [20] V. P. Conticello, D.L. Gin, R. H. Grubbs, J. Am. Chem. Soc. 1992,114, 9708
    [21] L. K. Johnson, S. C. Virgil, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc, 1990, 112, 5384
    [22] E. Thorn-Csanyi, K. P. Pflug, Die Makromolekulare Chemie, 1993, 194, 2287.
    [23] C. Y. Yu, M. L. Turner, Angew. Chem. Int. Ed. 2006, 45, 7797.

    Chapter 2
    [1] C. J. Brown, A.C. Farthing, Nature 1949, 164, 915
    [2] D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691
    [3] C.-Y. Yu, M. Helliwell, J. Raftery and M. L. Turner, Chem. – Eur. J., 2011, 17, 6991
    [4] M.Montanari, A. Bugana, A. K. Sharma and D. Pasini, Org. Biomol. Chem.,
    2011, 9, 5018
    [5] C.-Y Yu, C.-H Sie, C.-Y Yang, New J. Chem. 2014, 38, 5003
    [6] J. R. Davy, J. A. Reiss, J. C. S. Aust. J. Chem. 1976, 29, 163
    [7] J. H. Kwon, H.-D. Yeo, H.-J. Cha, M. J. Lee, H.-T. Park, J.-H. Park, C.-E. Park, Y.-H. Kim, Macromol. Res. 2011, 19, 197
    [8] J. H. Kwon, J. Y. An, H. Jang, S. Choi, D. S. Chung, M. J. Lee, et al, J. Polym. Sci. A Polym. Chem. 2011, 49, 1119.
    [9] R. Gatri, I. Ouerfelli, M. L. Efrit, F. S. Spirau, J. P. L. Porte, P. Valvin, T. Roisnel, S. Bivaud, H. A. Kilig, J. L. Fillaut, Organometallics. 2014, 33, 665
    [10] J. L. Segura, N. Martin, M. Hanack, Eur. J. Org. Chem. 1999, 1999, 643
    [11] D. T. Witiak, P. L. Kamat, D. L. Allison, S. M. Liebowitqt, R. Glaser, J. E. Holliday, M. L. Moeschberger and J. P. Schaller, J. Med. Chem. 1983, 26, 1679
    [12] I. Pischel, M. Nieger, A. Archut, F. Vogtle, Tetrahedron 1996, 52, 10043
    [13] M. Montanari, A. Bugana, A. K. Sharma, D. Pasini, Organic & Biomolecular
    Chemistry 2011, 9, 5018.
    [14] B. J. Lidster, J. M. Behrendt, M. L. Turner, Chem. Commun 2014, 50, 11867

    Chapter 3
    [1] Y. Minenkov, G. Occhipinti, V. R. Jensen, Organometallics 2013, 32, 2099
    [2] P. J. Lynch, L. O’neill, D. Bradley, H. J. Byrne, M. McNamara, Macromolecules.2007, 40, 7895
    [3] J. Li, Y. Pang, Synt. Met.2004, 140, 43
    [4] C. Y. Yu, J. W. Kingsley, D. G. Lidzey, M. L. Turner, Macromol. Rapid Commun. 2009, 30, 1889
    [5] M. Losurdo, Maria. M. Giangregorio, P. Capezzuto, A. Cardone, C. Martinelli, G. M. Farinola, F. Babudri, F. Naso, M. Buchel, G. Bruno, Adv. Mater. 2009, 21, 1115
    [6] A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213
    [7] T.Mori, M.Kijima, Opt. Mater 2007, 30,545
    [8] D. F. O'Brien, S. M. Lipson, A. J. Cadby, P. A. Lane, D. D. C. Bradley, W. J. Blau, Synth. Met, 2001, 121, 1405.
    [9] P. Taranelkar, M. Absulbaki, R. Krishnamoorti, S. Phanichphant, P. Waenkaew, D. Patton, T. Fulghum, R. Advincula, Macromolecules, 2006, 39, 3848
    [10] M. C. Yuan, M. Y. Chiu, C. M. Chiang, K. H. Wei, Macromolecules, 2010, 43, 6270
    [11] S. Chuanghote, T. Srikhirin, P. Supaphol, Macromol. Rapid Commun. 2007, 28, 651.

    無法下載圖示 全文公開日期 2020/06/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE