簡易檢索 / 詳目顯示

研究生: 黃力宇
Li-yu Huang
論文名稱: 雙頻帶注入鎖定除頻器與左手及右手共振腔三頻帶壓控振盪器之設計
Design of Dual Band Injection-Locked Frequency Divider and Triple-Band Voltage-Controlled Oscillator Using a Left-handed and a Right-handed Resonator
指導教授: 張勝良
Sheng-lyang Jang
徐敬文
Ching-wen Hsue
口試委員: 馮武雄
none
陳國龍
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 102
中文關鍵詞: 壓控振盪器除頻器
外文關鍵詞: triple band vco, fual band divider
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先,本論文為在除二除頻器中,為了增強注入信號在混波器的閘級,將注入信號送至前置放大器,當混波器的閘級偏壓在低於臨界偏壓或是截止區會有一個大的輸出電壓。量測結果顯示,直流偏壓為0.85V時,在未注入信號時,高頻部分為3.23 GHz 到3.59 GHz,低頻部分為1.71 GHz 到1.73 GHz。在注入能量0 dbm時低頻段和高頻段的除二鎖定範圍各自從2.8 GHz到5.3 GHz(61.7%)以及5.1 GHz到10 GHz( 64.9 %)。

    其次,使用左手和右手LC共振之三頻帶振盪器之設計,此三頻帶振盪器包含一對交叉耦合的nMOSFETs 和 兩對可變電容當作頻率轉換開關和頻率調變的機制。此振盪器是使用台積電0.18微米矽鍺 BiCOMS製程。在直流偏壓為0.8V時,其核心消耗功率高(中,低)頻各別為1.8(1.86,2.06)毫瓦。此振盪器氣信號可操作在頻率範圍為8.44GHz到8.71GHz, 6.74GHz到6.86GHz, 4.22GHz到4.47GHz,其晶片面積為1.045 × 1.064 mm2。

    最後,在一個三頻帶振盪器使用可變電容和MOS當開關之設計,此壓控振盪器使用一對可變電容作為頻率調變,此振盪器是使用台積電0.18微米CMOS製程。在直流偏壓為0.85時,其核心消耗功率高(中,低)頻各別為3.28(3.42,3.35)毫瓦。此VCO信號可操作在頻率範圍為7.17到7.32GHz, 4.58到5.76GHz, 3.49到3.75 GHz,其晶片面積為1.067 × 0.776 mm2 。


    First, in this thesis the injection signal is fed to a pre-amplifier to enhance the injection signal at the mixer gate in the divide-by-2 ILFD. The gate of mixer is biased in sub-threshold or off-state region to provide large output voltage. Measurement results show that at the supply voltage of 0.85 V, the free-running frequency is from 3.23 to 3.59 GHz for the high-frequency band and from 1.71 to 1.73 GHz for the low-frequency band. An external injected signal power of 0 dBm provides a low-band divide-by-2 locking range (61.7%) from 2.8 to 5.3GHz and a high-band locking range (64.9%) from 5.1~10.0GHz.

    Secondly, by exploiting a left-handed and a right-handed LC resonator, a triple-band (TB) oscillator is designed. The TB oscillator consists of a pair of cross-coupled nMOSFETs and two pairs of back-to-back varactors for both band switching and frequency tuning. The proposed oscillator has been implemented with the TSMC 0.18μm SiGe 3P6M BiCMOS technology and the core power consumption of the high (middle, low)- band core oscillator is 1.8(1.86, 2.06) mW, at the dc drain-source bias of 0.8 V. The oscillator can generate differential signals in the frequency range of 8.44-8.71GHz, 6.74-6.86GHz, and 4.22-4.47 GHz. The die area of the triple-band oscillator is 1.045 × 1.064 mm2.

    Finally, a triple-band (TB) oscillator with a varactor and MOS-mode switching is designed. The VCO uses a pair of varactors used for frequency tuning. The proposed oscillator has been implemented with the TSMC 0.18 μm 1P6M CMOS technology and the core power consumption of the high (middle, low)- band core oscillator is 3.87(4.03,3.95) mA and 3.28(3.42, 3.35) mW, respectively at the dc drain-source bias of 0.85 V. The VCO can generate differential signals in the frequency range of 7.17~7.32GHz, 4.58~5.76GHz, and 3.49~3.75 GHz. The die area of the triple-band VCO is 1.067× 0.766 mm2.

    Abstract III Table of Contents V List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Motivation 3 1.3 Framework of the Thesis 4 Chpter 2 Principles and Design Concepts of Voltage-Controlled Oscillators 6 2.1 Performance Parameters 6 2.2 Basic Principles of Oscillators 10 2.2.1 Feedback (Two-Port) Oscillators 11 2.2.2 Negative Resistance 13 2.3 Categorization of Oscillators 15 2.3.1 Ring Oscillator 15 2.3.2 LC-Tank Oscillator 17 2.4 Overview of the Cross-Coupled Oscillator 23 2.5 Voltage-Controlled Oscillators 27 2.6 Phase Noise and Q factor in Oscillators 28 2.6.1 Linear Time Invariant (LTI) Model - (The Lesson’s model) 30 2.6.2 Linear Time Variant (LTV) Model - (The Hajimiri’s Model) 34 2.6.3 Kinds of Noise 40 2.6.4 Phase Noise in Wireless Communications 43 2.6.5 Quality Factor 46 2.7 Phase Noise and Q factor in Oscillators 48 2.8 Appearance of Dual-Resonantce 54 2.8.1 Dual-Band Resonator 54 2.6.2 Two Series-LC Resonators 58 Chpter 3 Principles and Design Concepts of Injection Locking Frequency Divider 59 3.1 Principle of Injection Locked Frequency Divider 60 3.2 Locking Range 62 3.1 Direct ILFD 65 Chapter 4 Wide-Locking Range Injection-Locked Frequency Divider With Injection Mixer DC-Biased in Off-State 66 4.1 Introduction 66 4.2 Circuit Design 70 4.3 Measurement Result 67 Chapter 5 Right–Handed Resonator Voltage–Controlled Oscillator With Switchable Inverter 70 5.1 Introduction 78 5.2 Circuit Design 79 5.3 Measurement Result 84 Chapter 6 A Triple–Band CMOS Oscillator Using Stacked Right–Handed and Left–Handed LC Resonators 89 6.1 Introduction 89 6.2 Circuit Design 90 6.3 Measurement Result 94 Chapter 7 Conclusion 99 References 101

    [1] I.R. Chamas and S. Raman, “A 5 GHz I/Q Phase-tunable CMOS LC Quadrature VCO (PT-QVCO) for Analog Phase Calibrated Receiver Architectures,” Silicon Monolithic Integrated Circuits in RF Systems, 2007 Topical Meeting on 10-12 Jan. 2007 Page(s):269 - 272
    [2] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [3] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [4] J. Tang and D. Kasperkovitz, Oscillator Design Efficiency: A New Figure Of Merit For Oscillator Benchmarking.
    [5] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [6] B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
    [7] S. –Jun. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
    [8] Behzad Razavi Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [9] 劉隽宇, 翁若敏, “運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器,” 2005.07.
    [10] 林曉彤, 莊惠如, “應用於無線通訊之CMOS 射頻微機電開關及2-GHz/5-GHz 壓控振盪器RFIC之研究” 2004.06.
    [11] John Starr Hamel “LC tank Voltage Controlled Oscillator Tutorial,” Waterloo, Ontario, Canade, 2005
    [12] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966
    [13] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [14] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [15] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [17] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS
    circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [18] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS
    technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [19] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency
    dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [20] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [21] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in
    0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [22] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [23] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [24] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking
    Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [25] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [26] H. Wu, “Signal generation and processing in high-frequency/high-speed
    silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [27] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [28] K.-G. Park, C.-Y. Jeong, J.-W. Park, J.-W. Lee, J.-G. Jo, , and C. Yoo, “Current reusing VCO and divide-by-two frequency divider for quadrature LO generation,” IEEE Microw. Wireless Compon. Lett.,, vol. 18, no. 6, pp. 413–415, Jun. 2008.
    [29] A. Zolfaghari and B. Razavi, “A low-power 2.4 GHz transmitter/receiver CMOS IC,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 176-183, Feb. 2003.
    [30] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
    [31] S.-L. Jang, C. C. Liu and C.-Wei Chung, ” A Tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009.
    [32] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [33] S.-L. Jang, C. Y. Lin and C.-F. Lee, “A 0.35μm CMOS switched-inductor dual-band LC-tank frequency divider,” IEEE Int. VLSI- DAT, pp.240-242 Apr. 2008.
    [34] S.-L. Jang, C.-C. Liu, Y.-H. Liao, and R.-K. Yang, “A wide locking range divide-by-2 LC-tank injection locked frequency divider,” IEEE VLSI-DAT., 2010. pp.87-90
    [35] K. Yamamoto and M. Fujishima, “55GHz CMOS Frequency Divider with 3.2GHz Locking Range” ESSCC, pp. 135-138, Aug., 2004.
    [36] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection- locked divider,” in IEEE ISSCC 2006 Dig. Tech. Papers, Feb. 2006, pp. 600–601.
    [37] S.-L. Jang and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 613-615, Aug. 2007.
    [38] S.-L. Jang, C. Y. Lin and C.-F. Lee, “A 0.35μm CMOS switched-inductor dual-band LC-tank frequency divider,” IEEE Int. VLSI- DAT, pp.240-242 Apr. 2008.
    [39] S.-L. Jang, Zhi-Hong Wu, Ching-Wen Hsue and Heng-Fa Teng,” Wide-Locking Range Dual-Band Injection-Locked Frequency Divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013
    [40] Sheng-Lyang Jang, Zhi-Hong Wu, Ching-Wen Hsue and Heng-Fa Teng, ” Wide-Locking Range Dual-Band Injection-Locked Frequency Divider,” IEEE Microw. Wireless Compon. Lett., vol. 55, No. 10, pp.26, Dec. 2013.
    [41] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee, and S.-H. Lee,“A CMOS dual-band voltage controlled oscillator,” in Proc. IEEE APCCAS, Dec. 2006, pp. 514–517
    [42] M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual-band VCO with a voltage controlled inductor,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sep. 2002, pp. 799–802.
    [43] S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.

    [44] T.-Y. Lu and W.-Z. Chen, “A 38/114 GHz switched- mode and synchronous lock standing wave oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 40-42, Dec. 2010.
    [45] W.F. Andress and D. Ham, , “Recent developments in standing-wave oscillator design: Review,” In IEEE Radio Frequency Integrated Circuits Symp., June 6–8, 2004, pp. 119–122.
    [46] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
    [47] S.-L. Jang, Wei-Hao Lee, and Ching-Wen Hsue, ” Fully-integrated standing wave oscillator using composite right/left-handed LC network,” Microw. Opt. Technol. Lett.., vol. 55, 5, pp.985-988, May. 2013
    [48] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
    [49] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
    [50] N. Buadana and E. Socher, “A triple band travelling wave VCO using digitally controlled artificial dielectric transmission lines,” IEEE Radio Frequency Integrated Circuits Conf. (RFIC 2011), June 2011, Baltimore.
    [51] S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 1, pp. 74–81, Jan. 2006.
    [52] N. Buadana and E. Socher, “A triple band travelling wave VCO using digitally controlled artificial dielectric transmission lines,” IEEE Radio Frequency Integrated Circuits Conf. (RFIC 2011), June 2011, Baltimore.
    [53] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
    [54] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-co/ntrolled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.

    無法下載圖示 全文公開日期 2019/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE