簡易檢索 / 詳目顯示

研究生: 林法伯
Fa-Bo Lin
論文名稱: 注入式鎖定除頻器之設計與注入式鎖定除頻器之熱載子效應
Design of Injection Locked Frequency Divider and Hot Carrier Effects of Injection Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
馮武雄
Wu-Shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 116
中文關鍵詞: 注入式鎖定除頻器熱載子效應
外文關鍵詞: Injection Locked Frequency Divider, Hot Carrier Effects
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了兩個注入式鎖定除頻器與注入式鎖定除頻器之熱載子效應之研究。第一顆晶片實現於台積電(TSMC)0.18 um製程,這顆除二注入鎖定除頻器設計方式是用交叉耦合(cross couple)與並聯可調共振腔之振盪器,加上由主被動元件混合組成的線性混波器。當驅動偏壓為0.9伏特且注入訊號強度為0 dBm時,除二注入鎖定除頻器之操作範圍可接受注入訊號從3.7 GHz到10.1 GHz ,鎖定範圍6.4 GHz除頻比例為92.75%。此除頻器之核心功耗為16.56毫瓦,所占面積為0.839 ×0.566毫米平方;同一顆電路亦有除四功能,設計方式是交叉耦合(cross couple)與並聯可調共振腔之振盪器,加上由主被動元件混合組成的線性混波器。當驅動偏壓為0.9伏特且注入訊號強度為0 dBm時,除四除頻大小2.7 GHz除頻比例為17.475%。此除頻器之核心功耗為16.56毫瓦,所占面積為0.839 ×0.566毫米平方。
    第二顆晶片我們探討鎖定範圍除二注入鎖定除頻器上的熱載子效應,是採用台積電(TSMC)之矽鍺0.18 um製程完成。當電路遭到大於本製程可容許之偏壓加壓一段時間,可以量測到加壓一段時間內,鎖定範圍與除頻範圍之衰減。量測應力後鎖定範圍的結果與未加壓的電路比較有想當明顯的變化。在本段將討論熱載子效應對注入式鎖定除頻器之鎖定範圍與其他電路特性的影響。
    最後,我們探討在一個注入式鎖定除頻器之除二電路熱載子效應。採用台積電(TSMC)之0.18 um製程完成。本電路直接經由MOS注入外部訊號耦合到串聯共振腔內。本段可以見到應力之後與應力之前電路的鎖定範圍之衰減與振盪頻率的變化,與比較兩種不同熱載子效應實驗的結果。


    This thesis presents two Injection Locked Frequency Dividers (ILFDs). First one is a wide-locking range Injection Locked Frequency Divider by 2. Second one is a wide-locking range Injection Locked Frequency Divider by 4. Finally, we present two Injection locked frequency divider’s hot-carrier effects experiment. The above circuits are fabricated in the TSMC 0.18 μm CMOS process and 0.18um SiGe process.
    Firstly, we present a novel wide locking range divide-by-2 injection-locked frequency divider (ILFD) and the divider is implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-2 ILFD is based on a cross-coupled voltage-controlled oscillator (VCO)consist of a parallel-tuned LC resonator as well as injection MOSFETs with source voltage coupled from VCO output and the injection MOSFET is a linear mixer. At the drain-source bias of 0.9 V, and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is 6.4 GHz, from the incident frequency 3.7 GHz to 10.1 GHz, the percentage is 92.75%. A novel wide locking range divide-by-4 injection-locked frequency divider (ILFD) is proposed in the thesis and was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-4 ILFD is based on a cross-coupled voltage-controlled oscillator (VCO) with a parallel-tuned LC resonator and injection MOSFETs with source voltage coupled from VCO output and the injection MOSFET is a linear mixer. At the drain-source bias of 0.9 V, and at the incident power of 0 dBm the locking range of the divide-by-4 is 2.7 GHz, from the incident frequency 14.1 GHz to 16.8 GHz, the percentage is 17.47%. The core power consumption is 16.56 mW. The die area is 0.839 ×0.566 mm2.

    Secondly, a divide-by-2 injection-locked frequency divider (ILFD) is designed for hot-carrier stress experimental study. The ILFD is made of a parallel-tuned cross-coupled voltage-controlled oscillator and a capacitive direct-injection MOSFET composite, consisted two MIM capacitors in series with an injection MOSFET. The injection MOSFET is first dc-stressed, and degradation in locking range in the post-stress ILFD was found. Then the whole ILFD is overvoltage-stressed, and degradation in locking range in the post-stress ILFD was also found. The latter stress reduces the current consumption and output power, while the former increases the current consumption and output power.
    Finally, a divide-by-2 injection-locked frequency divider (ILFD) is designed in the 0.18μm CMOS technology for hot-carrier stress experimental study. The ILFD was tested at two bias conditions. At fixed supply voltage, the stress damage is larger when the gate of injection MOSFET is dc-biased below the supply voltage rather than equal to the supply voltage. The stress cause the degradation of locking range, current consumption and shifts the oscillation frequency.

    Table of Contents 中文摘要 I Abstract III 致謝 V Table of Contents VI List of Figures IX List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chpter 2 Overview of the Voltage–Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillator Theory 5 2.2.1 Feedback Oscillators 5 2.3 The Classification of Oscillators 9 2.3.1 LC-Tank Oscillators 9 2.3.2 Hartley and Colpitts Oscillators 11 2.3.3 Negative -Gm Oscillators 13 2.3.4 Resonatorless Oscillators 14 2.4 The parameters of Voltage-Controlled Oscillators 16 2.4.1 Center Frequency[Hz] 16 2.4.2 Phase Noise [dBc/Hz] 16 2.4.3 Frequency Tuning Range[Hz] 16 2.4.4 Tuning Linearity [Hz/V] 17 2.4.5 Power Consumption (W)[mW] 18 2.4.6 Output Signal Power[dBm] 18 2.4.7 Figure-of-Merit (FoM)[dBc/Hz] 18 2.5 Phase Noise in Oscillators 19 2.5.1 Definition of Phase Noise 19 2.5.2 Leeson’s Linear Time-Invariant (LTI) Phase Noise Model 20 2.5.3 Hajimiri’s Linear Time-Variant Phase Noise Model 24 2.5.4 Noise Sources 27 2.5.5 Phase Noise in Communications 31 2.5.6 Models of Phase Noise 34 2.6 Quality Factor 35 2.7 Semiconductor Process of Chips 36 2.7.1 Inductors 36 2.7.2 Transformers 44 2.7.3 Planar transformer 46 2.7.4 Planar Capacitors 47 2.7.5 Varactors 48 2.7.6 52 2.8 Cross-Coupled VCO 53 Chapter 3 Design of Injection Locked Frequency Divider 56 3.1 Principle of Injection Locked Frequency Divider 57 3.2 Direct ILFD 59 3.3 Locking Range 60 Chapter 4 Hot-Carrier Effects 64 Chapter 5 Wide-Locking Range Divide-by-2 Injection-Locked Frequency Divider Using Mixers DC-Biased in Subthreshold Region 67 5.1 Introduction 67 5.2 Circuit Design 70 5.3 Measurement Result 71 Chapter 6 Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider Using Two Linear Mixers 75 6.1 Introduction 75 6.2 Circuit Design 77 6.3 Measurement Result 79 Chapter 7 Hot-Carrier Stressed ÷2 Injection-Locked Frequency Divider 83 7.1 Introduction 83 7.2 Circuit Design 84 7.3 Measurement Result 86 Chapter 8 Investigation of Hot-Carrier Stressed Performance of a ÷2 Injection-Locked Frequency Divider 97 8.1 Introduction 97 8.2 Circuit Design 98 8.3 Measurement Result 101 Chapter 9 Conclusion……………………………………………….109 References 111

    References
    [1] J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
    [2] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [3] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [4] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
    [5] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
    [6] A. Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [7] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [8] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [9] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [10] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [11] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [12] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [13] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [14] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
    [15] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [16] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [17] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
    [18] K. Shu, E. Sanchez-Sinencio, CMOS PLL Synthesizers : Analysis and Design, Springer, 2005.
    [19] A. Porret, T. Melly, C. Enz, and E, Vittoz, “Design of high-Q varactors for low-power wireless applications using a standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, pp. 337-345, Mar. 2000.
    [20] F. Svelto, P. Erratico, S. Manzini, and R. Castello, “A metal oxide semiconductor varactor,” IEEE Electron Device Lett., vol. 20, pp. 164-166, Apr. 1999.
    [21] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jun. 2000.
    [22] T. Soorapanth, C. Yue, D. Shaeffer, T. Lee, and S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI Circuits Dig. Tech. Papers, , pp. 22-23. Jun. 1998.
    [23] 李少華, 張勝良, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” Apr. 2007.
    [24] B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
    [25] A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
    [26] B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [27] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [28] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS
    circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [29] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS
    technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [30] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency
    dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [31] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [32] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in
    0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [33] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [34] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [35] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking
    Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [36] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [37] H. Wu, “Signal generation and processing in high-frequency/high-speed
    silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [38] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [39] B. Razavi, Design of CMOS Analog Integrated Circuits, McGraw-Hall 2000.
    [40] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
    [41] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [42] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004.
    [43] S.-L. Jang, C.-W. Chang, Y.-J. Song, C.-C. Liu, and C.-W. Hsu, “On the injection methods in a top series-injection locked frequency divider”, Microelectronics Reliability, 50, pp.589–593,2010.
    [44] S.-L. Jang, C.-W. Lin, C. C. Liu, and M.-H. Juang, ” An active-inductor injection locked frequency divider with variable division ratio,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 39-41, Jan. 2009.
    [45] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang , ” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [46] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [47] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
    [48] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
    [49] S. Lee, S. Jang, and C. Nguyen, , “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
    [50] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [51] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [52] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlocked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
    [53] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, " A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
    [54] S.-L. Jang, C. C. Liu and C.-W. Chung, ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, April 2009.
    [55] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., vol. E93-C, no.1, pp. 136-139, Jan. 2010.
    [56] S.-L. Jang, H.-S. Chen, C.-C. Liu, and M.-H. Juang,” A 0.35 μm CMOS divide-by-3 LC injection locked frequency divider using linear mixers,” Micro. and Opt. Tech. Lett., vol. 52, no. 12, pp. 2740-2743, Dec., 2010.
    [57] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, April 2010.
    [58] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, July 2010.
    [59] M.-C. Chuang, J.-J. Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
    [60] S.-L. Jang, and C.-C. Fu, ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr Circ Sig Process., , Vol. 78, Issue 2, pp 523-528, Feb. 2014.
    [61] S.-S. Liu, S.-L. Jang, and C.-G. Chyau, " Compact LDD nMOSFET degradation model, " IEEE Trans. Electron Devices, Vol. 45, No. 7, pp.1538-1547, 1998.
    [62] S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, ” Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process (2014) 80:133–139.
    [63] S.-L. Jang, and J.-H. Hsieh, ”RF performance degradation in CMOS divide-by-3 injection-locked frequency divider due to hot carrier Effects”, J. Low Power Electronics. Vol.9, No. 4, pp.484-489, Dec. 2013
    [64] S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. vol. 13, no. 2, 1450009-1 April, 2014.
    [65] C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron-induced MOSFET degradation—Model, monitor, and im- provement,” IEEE Trans. Electron Devices, vol. ED-32, no. 2, pp. 375– 385, Feb. 1985.
    [66] G. T. Sasse , F. G. Kuper and J. Schmitz "MOSFET degradation under RF stress", IEEE Trans. Electron Devices, vol. 35, no. 11, pp.3167 -3174 2008
    [67] C.H. Liu, R.L.Wang, Y.K.Su, C.H. Tu; Y.Z. Juang, “DC and RF degradation induced by high RF power stresses in 0.18-μm nMOSFETs,” IEEE Trans. Device and Materials Reliability, vol.10, no.3, pp.317-323, Sept. 2010.
    [68] E. Xiao, J. S.Yuan, and H. Yang, “Effects of hot carrier stress and oxide soft breakdown on VCO performance,” IEEE Trans. Microwave Theory and Tech., pp. 2453-2458, 2002.
    [69] H.D. Yen, J.S. Yuan, R.L. Wang, G.W. Huang, W.K. Yeh , and F.S. Huang,"RF stress effects on CMOS LC-loaded VCO reliability evaluated by experiments" , Microelectron. Reliab , 12 , 2 , pp369-374 ,2012,
    [70] E. Xiao "Hot carrier effect on CMOS RF amplifiers", Proc. IEEE Int. Symp. Rel. Phys., pp.680 -681 2005.
    [71] Naseh, S., Deen, M. J., and Chen, C.-H., “Hot-carrier reliability of submicron NMOSFETs and integrated NMOS low noise amplifiers,” Microelectron. Reliab, pp. 201-212, 2005.
    [72] J. S. Yuan and E. Kritchanchai, “Evaluation of electrical stress effect on Class F power amplifier by simulation,” Advances in Microelectronic Eng. Vol. 1, Issue 1, 1-8, Jan. 2013.
    [73] J. S. Yuan and J. Ma "Evaluation of RF-stress effect on class-E MOS power-amplifier efficiency", IEEE Trans. Electron Devices, vol. 55, no. 1, pp.430 -434 2008
    [74] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015–1027, 2003.
    [75] S.-L. Jang, J.-F. Huang, C.-C. Fu and M.-H. Juang, ” Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider,” Analog Integr Circ Sig Process, 80:133–139, 2014.
    [76] S.-L. Jang, and J.-H. Hsieh, ”RF performance degradation in CMOS divide-by-3 injection-locked frequency divider due to hot carrier Effects”, J. Low Power Electronics. Vol.9, No. 4, pp.484-489, Dec. 2013
    [77] S.-L. Jang and T.-C. Fu, " Effects of hot-carrier stress on the RF performance of a 0.18μm MOS divide-by-4 LC injection-locked frequency divider," Fluct. Noise Lett. vol. 13, no. 2, 1450009-1 April, 2014.

    無法下載圖示 全文公開日期 2019/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE