簡易檢索 / 詳目顯示

研究生: 李少華
Shao-Hua Lee
論文名稱: 新型高頻CMOS壓控振盪器和注入鎖定除頻器之實現
Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsu
黃進芳
Jin-Fang Huang
莊敏宏
Min-Hung Juang
廖原煌
Yuan-Huang Liau
馮武雄
Wu-Shiung Feng
鄧恆發
Heng-Fa Teng
黃柏仁
Bo-Ren Huang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 120
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: Voltage controlled oscillator, Injection locked frequency divider
相關次數: 點閱:223下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文提出了二個壓控振盪器和四個注入鎖定除頻器,它們分別使用了標準台積電0.18微米和聯電0.18微米CMOS製程去實現。
    在壓控振盪器裡,第一個振盪器是有背閘極耦合技術的互補式考畢子壓控振盪器。振盪器由兩個考畢子振盪器和一個變壓器所組成,它使用了變壓器耦合技術和差動式調變之金氧半變容器來降低相位雜訊。第二個振盪器是一個使用電流再利用技術的變壓器耦合四相位壓控振盪器。
    在注入鎖定除頻器(ILFDs)中,第一個注入鎖定除頻器是一個電流再利用的除二注入鎖定除頻器,它由堆疊串聯的兩個N型金氧半電晶體所組成。注入鎖定注乃透過增加一個注入N型金氧半電晶體在除頻器的差動輸出端之間而產生。由於直流電流的重新使用,使得注入鎖定除頻器能操作在更低的功率下。第二個注入鎖定除頻器是用一種次諧波的混頻器技術的除四注入鎖定除頻器,一個次諧波混頻器和一個除二注入鎖定除頻器被使用去建構成新的除頻器。第三個注入鎖定除頻器是一個寬鎖定範圍的除四注入鎖定除頻器,減少LC諧振器的固定電容量和調變兩個變容器並且切換電感被用來增加除四注入鎖定除頻器的鎖定範圍。第四個注入鎖定除頻器是一個四相位輸出的注入鎖定除頻器,它是由兩個LC槽的壓控振盪器和兩對用來耦合兩個壓控振盪器並產生四相位的耦合電晶體所組成。


    This thesis presents two voltage controlled oscillators and four injection locked frequency dividers, which are implemented by using standard TSMC and UMC 0.18um CMOS process respectively.
    In voltage controlled oscillators, the first oscillator is a differential complementary Colpitts VCO with back-gate coupling technique. The oscillator consists of two Colpitts VCOs and a transformer, it uses transformer coupling technique and differentially tuned MOS varactors for reducing phase noise. The second oscillator is a transformer coupling quadrature VCO with current reused technology.
    In injection locked frequency dividers (ILFDs), the first injection locked frequency divider is a current reused divide-by-2 injection locked frequency divider. It consists of two nMOS transistors stacked in series. The injection locking is performed by adding an injection nMOS between the differential outputs of the divider. The ILFD can operate with a lower power due to the reuse of dc current. The second injection locked frequency divider is a divide-by-4 injection locked frequency divider with a sub-harmonic mixer technique. A sub-harmonic mixer and a CMOS direct injection locked frequency divider are used to form the new divider. The third injection locked frequency divider is wide locking range divide-by-4 injection locked frequency divider. Decreasing the fixed capacitance of LC resonator and tuning both the varactor and switched inductor can be used to increase the locking range of divide-by-4 frequency divider. The fourth injection locked frequency divider is divide-by-4 ILFD with quadrature outputs. It consists of two LC-tank VCOs and two pairs of coupling transistors for coupling two VCOs to generate quadrature outputs.

    中文摘要……………………………………………………………I Abstract………………………………………………………II 誌謝………………………………………………………………III List of Figures ..........................................VI List of Tables………………………………………………………IX Chapter 1 Introduction ................................1 1.1Motivation .......................................1 1.2Organization .....................................2 Chapter 2 The Principle of Oscillators and Injection Locked Frequency Dividers..........................................................4 2.1Basic Theory of Oscillators.......................4 2.2Definitions of Q..................................7 2.3Phase Noise.......................................8 2.3.1Leeson’s Linear Time-Invariant Phase Noise Model.......10 2.3.2Hajimiri’s Linear Time-Variant Phase Noise Model.......12 2.3.3Rael-Abidi’s Phase Noise Model...................16 2.4On Chip Varactors.................................17 2.4.1Diode Varactor....................................17 2.4.2MOS Varactor......................................18 2.5On Chip Inductors.................................22 2.5.1Spiral Inductor...................................22 2.5.2The Transformer...................................26 2.6The Popular Resonator.............................30 2.6.1Single Transistor Oscillator......................32 2.6.2Cross-Coupled Oscillator..........................34 2.6.3Complementary Cross-Coupled Topology..............35 2.6.4Quadrature Oscillator.............................37 2.7Parameters of VCO's...............................40 2.8Injection Locking.................................43 Chapter 3 Voltage Controlled Oscillator................48 3.1A New Differential Colpitts VCO...................48 3.1.1Introduction......................................48 3.1.2Circuit Design....................................50 3.1.3Measurement Results...............................51 3.1.4Summary...........................................55 3.2A Current Reused Quadrature VCO...................56 3.2.1Introduction......................................56 3.2.2Circuit Design....................................57 3.2.3Measurement Results...............................60 3.2.4Summary..........................................63 Chapter 4 Divide-by-2 Injection Locked Frequency Divider.......64 4.1Introduction......................................64 4.2Circuit Design....................................65 4.3Measurement Results...............................67 4.4Summary...........................................71 Chapter 5 Divide-by-4 Injection Locked Frequency Divider.......72 5.1A Divide-by-4 ILFD with Subharmonic Mixer Technique.......72 5.1.1Introduction......................................72 5.1.2Circuit Design....................................74 5.1.3Measurement Results...............................76 5.1.4Summary...........................................79 5.2Wide Locking Range Divide-by-4 ILFDs..............80 5.2.1Introduction......................................80 5.2.2Circuits Design...................................81 5.2.3Measurement Results...............................82 5.2.4Summary...........................................88 5.3A Divide-by-4 ILFD with Quadrature Outputs........88 5.3.1Introduction......................................88 5.3.2Circuit Design....................................89 5.3.3Measurement Results...............................91 5.3.4Summary...........................................95 Chapter 6 Conclusions...........................................96 References ………………………………………………………………………99 Publication ………………………………………………………………………106

    [1]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003
    [2]B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [3]B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331-343, 1996.
    [4]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, 1966.
    [5]K. A. Kouznetsov and R. G. Meyer, “Phase noise in LC oscillators,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1244–1248, 2000.
    [6]J. W. M. Rogers, J. A. Macedo, and C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCOs,” IEEE J. of Solid-State Circuits, vol. 35, no. 9, pp. 1360–1367, 2003.
    [7]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in IEEE Custom Int. Circuit Conf., 2000.
    [8]E. Hegazi, H. Sjoland, and A. Abidi, “A filtering technique to lower oscillator phase noise,” in IEEE Solid-State Circuits Conf., Digest of Technical Papers, pp. 364–365, 2001.
    [9]C. Samori, A. L. Lacaita, A. Zanchi, S. Levantino, and F. Torrisi, “Impact of indirect stability on phase noise performance of fully-integrated LC tuned VCOs,” in IEEE European Solid-State Circuits Conf., pp. 202–205, 1999.
    [10]S. Levantino, C. Samori, A. Bofanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on Tuning Range and Flicker Noise Upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, 2002.
    [11]Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, 1998.
    [12]T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, 2000.
    [13]J. N. Burghartz, “Integrated RF and microwave components in BiCMOS technology,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1559-1570, 1996.
    [14]F. Svelto et al, “A metal-oxide-semiconductor varactor,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 164-166, 1999.
    [15]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, 2000.
    [16]R. L. Bunch, S. Raman, “Large signal analysis of MOS varactors in CMOS -Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, pp. 1325-1332, 2003.
    [17]J. Aguilera, R. Berenguer, Design and test of integrated inductors for RF applications, Kluwer Academic Publishers, 2004.
    [18]J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998.
    [19]Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [20]A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [21]Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS ‘99, vol. 2, pp. 573-576, 1999.
    [22]C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002.
    [23]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109, 1974.
    [24]J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
    [25]A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology," IEEE J. Solid-State Circuits, vol. 36, pp. 620-628, 2001.
    [26]A. Hajimiri, and T. H. Lee, The design of low noise oscillators, Kluwer Academic Publishers, 1999.
    [27]B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
    [28]S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1011, 2002.
    [29]J. J. Kim, B. Kim, “A low phase noise CMOS LC oscillators with a ring structure,” ISSCC Dig. Tech. Papers, pp. 430-431, 2000.
    [30]J. Savoj, B. Razavi, High-speed CMOS circuits for optical receivers, Kluwer Academic Publishers, 2001.
    [31]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380–1385, 1973.
    [32]B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
    [33]H. Wu and A. Hajimiri, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement and slides,” Solid-State Circuits Conf., 2001
    [34]H. R. Rategh, D. Samavati and T. H. Lee, “A CMOS frequency synthesizer with an injected-locked frequency divider for a 5-GHz wireless LAN receiver,” VLSI Circuits, 1999.
    [35]H.R Rategh and T.H Lee, “Superharmonic injection locked frequency dividers,” IEEE J. Solid-State Conf., vol. 34, pp. 813-821, 1999.
    [36]D. Baek, and S. Ko, “Ku-band InGaP–GaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Micro. Theory Tech., vol.52, no.4, pp. 1353-1359, 2004.
    [37]R. Aparicio, A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 1728–1736, 2002.
    [38]H. Veenstra and E. van der Heijden, “A 35.2–37.6GHz LC VCO in a 70/100GHz fT/fmax SiGe technology,” in ISSCC Dig. Tech. Papers, pp. 394–395, 2004.
    [39]M. Zannoth, B. Kolb, J. Fenk, and R. Weigel, “A fully integrated VCO at 2GHz,” IEEE J. of Solid-State Circuits, vol. 33, Issue 12, pp. 1987 – 1991, 1998.
    [40]N. H. W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu,L. F. Wagner, C. Plett and N. G. Tarr, ”A 1V 3.8-5.7GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Micro. Theory Tech., vol.51, no.8, pp. 1952-1959, 2003.
    [41]H. Moon, S. Kang, Y. T. Kim, and K. Lee, “A fully differential LC-VCO using a new varactor control structure,” IEEE Micro. Wireless Comp. Lett., vol. 14, no. 9, pp. 410 – 412, 2004.
    [42]J. Rogers, J. Macedo, and C. Plett, “The effect of varactor nonlinearity on phase noise of completely integrated VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 1360–1367, 2001.
    [43]J. B. Bhattacharjee, D. Mukherjee, S. Nuttinck, and J. Laskar, “A 5.8GHz fully integrated low power phase noise CMOS LC VCO for WLAN applications,” in IEEE MTT-S Dig., pp. 585–588, 2002.
    [44]Y. K. Chu and H. R. Chuang, “A fully integrated 5.8GHz U-NII band 0.18-um CMOS VCO,” IEEE Micro. Wireless Comp. Lett., vol. 13, no. 7, pp. 287–289, 2003.
    [45]T. Song, S. Ko, D.-H. Cho, H.-S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled shifting CMOS VCO using bias-level technique,” in IEEE RFIC Dig., pp. 127–130, 2004.
    [46]M.-D. Tsai, Y.-H. Cho and H. Wang, “A 5GHz low phase noise differential Colpitts CMOS VCO,” IEEE Micro. Wireless Comp. Lett., vol. 15, no. 5, pp. 327-329, 2006.
    [47]C.-S. Wang, S.-W. Kao, and P.-C. Huang, “A low phase noise wide tuning range CMOS quadrature VCO using cascade topology,” Proc. of 2004 IEEE Asia-Pacific Con. on Adv. Sys. Int. Circuits, pp. 138-141, 2004.
    [48]H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, S.-G. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, issue.6, pp. 952-955, 2004.
    [49]S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low phase noise 5GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, 2003.
    [50]N.-J. Oh and S.-G. Lee, “Current reused LC VCO,” IEEE Micro. Wireless Comp. Lett., vol. 15, no. 11, pp. 736-738, 2005.
    [51]W. Jian, T. Jun, and W. Omar, “Theory of cross-coupled RF oscillator for multi- and quadrature-phase signal generation,” ASIC, 2003. Proceed. 5th Int. Conf., vol. 2, pp. 1014-1017, 2003.
    [52]G. De Astis, D. Cordeau, J.-M. Paillot, L. Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, Issue 10, pp. 2087-2091, 2005.
    [53]U. Singh, and M. M. Green, “High-frequency CML clock dividers in 0.13-um CMOS operating up to 38GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658 - 1661, 2005.
    [54]T.-C. Lee, and Y.-C. Huang, “A Miller divider based clock generator for MBOA-UWB application,” VLSI Circuits, 2005 Dig. Tech. Papers, 2005 Symp. on 16-18, pp. 34 - 37, 2005.
    [55]H. Wu, A. Hajimiri, “A 19GHz 0.5mW 0.35um CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, 2001.
    [56]P. Adreanj and H. Sjoland, “A 2.2GHz CMOS VCO with inductive degeneration noise suppression,” in Proc. IEEE Custom Integ. Circuits Conf., San Diego, CA, pp. 197-200, 2001.
    [57]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, 2004.
    [58]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Micro. Wireless Comp. Lett., vol. 16, no. 5, pp. 299-301, 2006.
    [59]J. Lee and B. Razavi, “A 40GHz frequency divider in 0.18-um CMOS technology,” in VLSI Circuits Tech. Dig., pp. 259-262, 2003.
    [60]B. Razavi, K. F. Lee, and R. H. Yan, “A 13.4GHz CMOS frequency divider,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 176–177, 1994.
    [61]R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proc. Inst. Radio Eng, vol. 27, pp. 446-456, July 1939.
    [62]S. Pellerano, S. Levantino, C. Samori, and A. L. Lacaita, “A 13.5mW 5GHz frequency synthesizer with dynamic-logic frequency divider,” IEEE J. Solid State Circuits, vol 39, No.2, pp. 378 - 383, 2004.
    [63]J. Lee and B. Razavi, “A 40GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, 2004.
    [64]S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015–1027, 2003
    [65]Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, 2004.
    [66]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol 39, No.7, pp. 1170 - 1174, 2004.
    [67]C. F. Jou, K.-H. Cheng, W.-C. Lien, C. H. Wu, and C. H. Yen, “Design of a concurrent dual-band receiver front-end in 0.18um CMOS for WLANs IEEE 802.11a/b/g applications,” in IEEE 47th IMSCS, pp. I-177 – I-180.
    [68]M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol 38, No.10, pp. 1762 - 1766, 2003.
    [69]K. Yamamoto, and M. Fujishim, “70GHz CMOS harmonic injection-locked divider,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 600–602, 2006.
    [70]C. J. Madden, D. R. Snook, R. L. Van Tuyl, M. V. Le, and L. D. Nguyen, “ A novel 75GHz InP HEMT dynamic divider,” in GaAs IC Symp. Dig., pp. 137–140, 1996.
    [71]J. Jeong, and Y. Kwon, “V-band high-order harmonic injection-locked frequency divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Micro. Theory Tech., vol. 53, no. 6, pp. 1891–1898, 2005.
    [72]Y.-H. Chuang, S.-H. Lee, S.-L. Jang, J.-J. Chao,and M.-H. Juang, “A ring-oscillator-based wide locking range frequency divider,” IEEE Micro. Wireless Comp. Lett., vol. 16, no. 8, pp. 470–472, 2006.
    [73]Razavi, K. Soumyanath, L. R. Carley, and R. Bishop1, “An integrated 10/5GHz injection-locked quadrature LC VCO in a 0.18µm digital CMOS process,” ESSCIRC 2002, pp. 543-546, 2002.
    [74]I. Kwon, K. Lee, “An integrated low power highly linear 2.4GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Micro. Wireless Comp. Lett., Vol. 15, Issue 1, pp. 36-38, 2005.

    QR CODE