簡易檢索 / 詳目顯示

研究生: 羅業興
Ye-xing Luo
論文名稱: 採用雙路徑迴路濾波器搭配多重增益壓控振盪器之CMOS時脈與資料回復電路的設計與實現
Design and Implementation of CMOS Clock and Data Recovery Circuit Using a Dual-Path Loop Filter with a Multi-Gain Voltage Controlled Oscillator
指導教授: 楊湰頡
Rong-Jyi Yang
口試委員: 姚嘉瑜
Chia-Yu Yao
張湘輝
Hsiang-Hui Chang
韓松融
Sung-Rung Han
陳超群
Chao-Chyun Chen
莊基男
Chi-Nan Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 時脈與資料回復電路雙路徑迴路濾波器多重增益壓控振盪器
外文關鍵詞: clock and data recovery circuit, dual-path loop filter, multi-gain VCO
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時脈與資料回復電路(Clock and Data Recovery Circuit, CDR)廣泛的用於有線通訊系統。不論是從洲際間的光纖傳輸到通用序列匯流排(Universal Serial Bus, USB),時脈與資料回復電路都是接收端中不可或缺的重要部分。近年來,個人行動裝置蓬勃發展,產品的輕薄短小成為最主要的重點。論文中,於時脈與資料回復電路中使用雙路徑(Dual-Path)的迴路濾波器,透過設計兩迴路的增益,可以有效的降低晶片中迴路濾波器的電容值,減少晶片面積。
    與過去使用雙路徑的迴路濾波器相比,論文中設計避免使用運算放大器以及大電流的電流泵切換,而採用多重增益的壓控振盪器搭配雙路徑迴路濾波器。使用多重增益壓控振盪器的雙路徑迴路濾波器可以使時脈與資料回復電路系統的迴路頻寬設計不必受限於運算放大器的頻寬。此外迴路中避免較大電流的電流泵切換,亦可以降低迴路濾波器中的雜訊,使其具有較佳的抖動表現。設計兩個相差數倍的壓控振盪器增益,使兩迴路增益不同。迴路濾波器的極點以及零點,?b兩路徑迴路增益相差數倍的情況下,極點與零點的頻率亦會有該倍數的改變。經由妥善設計的兩個壓控振盪器增益相差倍數,可以有效的縮小迴路濾波器內的電容值。
    與過去採用兩增益電流泵的雙路徑迴路濾波器時脈與資料回復電路相比,此論文使用多重增益壓控振盪器搭配雙路徑的迴路濾波器,由於在相位校正迴路內降低壓控振盪器的增益來達到電容放大效果,會使得相位校正迴路的頻率補償能力下降。因此,論文將頻率校正迴路獨立出來,並設計頻率校正迴路具有最大的壓控振盪器增益,用來克服製程變異。因此,論文中使用多重增益壓控振盪器搭配雙路徑的迴路濾波器不會因為頻率補償能力不足而造成無法達到目標頻率的問題。由於此設計將頻率校正迴路與相位校正迴路分離,因此得以對頻率鎖定迴路詳細分析並量測。論文內對無參考時脈的時脈資料回復電路內所廣泛使用的頻率偵測器(Frequency Detector, FD)操作行為進行了詳細的分析,以及鎖定時間的推導,最後亦經由量測結果驗證。
    此電路使用標準0.18 m 1P6M CMOS製程實現。晶片內主動元件面積為0.4mm×0.38mm,被動元件為0.53mm×0.24mm,輸入樣本為PRBS 27-1的資料,量測其抖動(Jitter)峰對峰值為37.6ps;輸入樣本為PRBS 215-1的資料,量測其抖動峰對峰值為55.8ps;輸入樣本為PRBS 231-1的資料,量測其抖動峰對峰值為58.8ps。系統操作於2.5Gb/s,在供應電壓1.8V時,晶片消耗功率為67.5mW。


    Clock and data recovery (CDR) circuit is used widely in data transmission system. From intercontinental communication to universal serial bus (USB), the CDR circuit always plays an important role in the receiver. In personal mobile products, the compact size is the priority. In this work, the dual-path loop filter is adopted to the CDR circuit. The proposed configuration of loop filter can reduce the on-chip capacitor size by a factor N in comparison with the traditional one.
    Insead of operational amplifier (OPA) and high current gain charge pump in used dual-path loop filter, this design adopted the multi-gain voltage controlled oscillator (VCO). Without using OPA, the system loop bandwidth would not be limited by OPA’s loop bandwidth. Using low current gain charge pump can reduse the noise in loop filter, and it can bring the batter output jitter performance. By designing the multi-gain VCO properly, the different gain between the two paths in dual-path loop filter can be realized. The pole and zero frequency can be change by designing the different gain in dual-path loop filter. In other words, the capacitor value can be reduse by designing the multi-gain VCO appropriately.
    Due to multi-gain VCO reduces the gain to achieve the capacitor multiplier, the ability of frequency compensation on phase tracking loop would be degrade. Therefore, this design adopted the independent frequency tracking loop. The frequency tracking loop has the maxmum VCO gain to overcome the process, voltage, temperature and load (PVTL) variations. The dual-path loop filter with multi-gain VCO can reach the target frequency by adding the frequency tracking loop. In this paper, the math model of frequency tracking loop was derived and proved because this system has the independent frequency tracking loop which can be measured.
    This CDR circuit is implemented by standard 0.18-m 1P6M CMOS technology, and occupies active area of 0.4×0.38mm2 and a passive area of 0.53×0.24mm2. The retime clock peak-to-peak jitter measurement is 37.6ps when data pattern is PRBS 27-1. When data pattern is PRBS 215-1 and 231-1, the retime clock peak-to-peak jitter measurement is 55.8ps and 58.8ps. The power dissipation at 2.5 Gb/s is 67.5mW from a 1.8-V power supply.

    第一章 簡介 1 第二章 基本時脈與資料回復電路 3 2.1 基本時脈與資料回復電路架構 4 2.1.1 具有參考時脈的時脈與資料回復電路 4 2.1.2 無參考時脈的時脈與資料回復電路 6 2.2 系統組成 6 2.2.1 相位偵測器 6 2.2.1.1 不歸零(Non Return to Zero, NRZ)資料之相位偵測技術 6 2.2.1.2 Hogge 相位偵測器 7 2.2.1.3 Sample-and hold相位偵測器 10 2.2.1.4 Bang-Bang相位偵測器 11 2.2.2 頻率偵測器 12 2.2.3 壓控振盪器 14 2.3 迴路分析 15 2.3.1 線性迴路分析 15 2.3.1.1 採用一階迴路濾波器 16 2.3.1.2 採用二階迴路濾波器 17 2.3.2 採用二位元相位偵測器的系統迴路分析 20 第三章 隨機NRZ資料的頻率偵測技術 23 3.1 傳統頻率偵測器 23 3.1.1 類比型正交相關(Quadricorrelator)頻率偵測器 23 3.1.2 數位型正交相關頻率偵測器 25 3.2 改良型數位正交相關頻率偵測器 29 3.2.1 寬線性範圍的頻率偵測器 29 3.2.2 改良型數位頻率偵測器架構與分析 31 3.2.3 數位型正交相關頻率偵測器鎖定時間分析 34 3.2.3.1 頻率偵測器轉態偵測機率 34 3.2.3.2 連續的資料內含位元數出現機率及Data轉態機率分析 44 3.2.3.3 鎖定時間分析 47 第四章 採用Dual-Path 迴路濾波器技術之時脈與資料回復電路 57 4.1 相關研究發展現況 57 4.1.1 傳統迴路濾波器 57 4.1.2 雙路徑(Dual-Path) 迴路濾波器 61 4.1.2.1 採用多重增益電流泵之雙路徑迴路濾波器 62 4.1.2.2 採用多重增益壓控振盪器之雙路徑迴路濾波器 65 4.1.2.3 低雜訊雙路徑迴路濾波器 66 4.2 系統雜訊分析 68 4.3 電路架構與實現 71 4.3.1 系統架構 71 4.3.2 電路實現 73 4.3.2.1 相位偵測器 73 4.3.2.2 頻率偵測器 74 4.3.2.3 電流泵 75 4.3.2.4 多重增益壓控振盪器 76 4.3.2.5 鎖定偵測器與除頻器 78 4.3.2.6 切換電容式電阻控制迴路 78 4.4 系統參數設計 79 4.5 模擬結果 80 4.5.1 蒙地卡羅模擬 80 4.5.2 電路模擬 82 4.6 量測結果 84 第五章 結論與未來研究 101 附錄a 103 附錄b 107 參考文獻 111

    [1] J. Savoj, B. Razavi, HIGH-SPEED CMOS CIRCUIT FOR OPTICAL RECEIVERS, Springer, pp.8, 2001.
    [2] Hogge, C.R., Jr., "A self correcting clock recovery circuit," Electron Devices, IEEE Transactions on , vol.32, no.12, pp. 2704-2706, Dec 1985.
    [3] C. Hogge, “A self-correction clock recovery circuit,” IEEE J. Lightwave Technology, vol. LT-3, pp 1312-1314, Dec. 1985.
    [4] S. B. Anand and B. Razavi, “A 2.75-Gb/s CMOS clock and data recovery circuit with broad capture range,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Paters, Feb. 2001, pp.214-215.
    [5] H. Wang, and R. Nottenburg, “A 1Gb/s CMOS clock and data recovery circuit,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Paters, Feb. 1999, pp.354-355.
    [6] S. B. Anand and B. Razavi, “A CMOS clock recovery circuit for 2.5-Gb/s NRZ data,” IEEE J. Solid-State Circuit, vol.36, pp.432-439, Mar. 2001.
    [7] J. D. H. Alexander, “Clock Recovery from Random Binary Data,” Electronics Letter, vol. 11, pp. 541-542, Oct. 1975.
    [8] Gardner. F., "Properties of Frequency Difference Detectors," Communications, IEEE Transactions on, vol.33, no.2, pp. 131-138, Feb 1985.
    [9] Stilling, B., "Bit rate and protocol independent clock and data recovery," Electronics Letters , vol.36, no.9, pp.824-825, 27 Apr 2000.
    [10] F. M. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Trans. On Communications, vol.28, pp. 1849-1858, Nov 1980.
    [11] Richard C. Walker, “Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission System”, pp. 34-45, Phase-Locking in High-Performance System, IEEE press, 2003, ISBN 0-471-44727-7.
    [12] Messerschmitt, D., "Frequency Detectors for PLL Acquisition in Timing and Carrier Recovery," on Communications, vol.COM-27, no.9, pp. 1288-1295, Sep 1979.
    [13] C.-G. Yoon, S.-Y. Lee and C.-W. Lee, “Digital logic implementation of quadricorrelator frequency detector,” in Proc. IEEE 37th Midwest Symposium on Circuit and Systems, vol.2, Aug. 1994, pp. 824-825, April 2000.
    [14] K.-J. Hsiao, M.-H. Lee, T.-C. Lee, “A clock and data recovery circuit with wide linear range frequency detector”, VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE International Symposium on, pp.121-124, 2008.
    [15] D. Dalton, K. Chai, E. Evans, M. Ferriss, D. Hitchcox, P. Murray, S. Selvanayagam, P. Shepherd, L. DeVito, “A 12.5-Mb/s to 2.7-Gb/s Continuous- Rate CDR With Automatic Frequency Acquisition and Data-ate Readback.” IEEE J. Solid-State Circuit, vol.40, pp.2713-2725, Dec. 2005.
    [16] Jan Craninckx, Michel S. J. Steyaert, “A Fully Integrated CMOS DCS-1800 Frequency Synthesizer”, IEEE J. Solid-State Circuit, vol.33, pp.2054-2065, Dec. 1998.
    [17] Y. Koo, H. Huh, Y. Cho, J. Lee, J. Park, K. Lee, D.-K. Jeong, W. Kim, “A Fully Integrated CMOS Frequency Synthesizer With Charge-Averaging Charge Pump and Dual-Path Loop Filter for PCS- and Cellular-CDMA Wireless Systems”, IEEE J. Solid-State Circuit, vol.37, pp.536-542, May. 2002.
    [18] C.-C. Chen, S.-C. Lee, S.-J. Liu, “A Spread-Spectrum Clock Generator Using a Capacitor Multiplication Technique”, Emerging Information Technology Conference, 2005.
    [19] Rezayee, A., Martin, K., “A 9-16Gb/s clock and data recovery circuit withthree-state phase detector and dual-path loop architecture”, Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European, pp.683-686, 2003.
    [20] C.-Y. Kuo, J.-Y. Chang, S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer”, Circuits and Systems I: Regular Papers, vol: 53, pp. 526-533, 2006.
    [21] P. Larsson, “A 2-1600-MHz CMOS Clock Recovery PLL with Low-Vdd Capability,” IEEE J. Solid-State Circuit, vol.34, pp.1951-1960, Dec. 1999.

    無法下載圖示 全文公開日期 2015/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE