簡易檢索 / 詳目顯示

研究生: 林欽山
ching-shan Lin
論文名稱: 大型高純度氧化鋁物件製程與其在NF3/Ar電漿蝕刻行為
Processing of Large Alumina Components of High Purity and the their Etching Behavior in a NF3/Ar Plasma Environment
指導教授: 林舜天
Shun-Tian Lin
洪儒生
Lu-Sheng Hong
口試委員: 金重勳
Tsung-Shune Chin
王錫福
Sea-Fue Wang
朱瑾
Jinn P. Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 310
中文關鍵詞: 電漿蝕刻氧化鋁
外文關鍵詞: plasma, etching, alumina
相關次數: 點閱:379下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 12吋半導體製程中之化學氣相沉積設備反應室內,所需之精密氧化鋁陶瓷,必須具備有高純度、能抵抗電漿環境中的侵蝕性氣體與300mm以上大尺寸物件的特性。所以,胚體成型的技術是一項重要課題,更需要鑽石工具以CNC工具機加以研磨加工,方能達到精度之要求。在半導體製程中,薄膜不僅會沉積於矽晶圓上,也會附著於反應室內部的氧化鋁表面上,形成不需要的殘渣,必須以電漿清洗反應室的內壁,以維護一定的穩定性。而高純度氧化鋁仍然含有微量的氧化矽雜質,此雜質並且傾向偏析於晶界上,在具蝕刻性的電漿環境下,顯然晶界較易受到侵蝕。因此探討氧化鋁材質與蝕刻性氣體之間的關係是有必要的。本研究在製程方面,藉由冷均壓成型方法,利用六種不同分佈的粉末顆粒,經由不同的冷均壓成型壓力設計。得知分佈比較寬廣的高純度氧化鋁粉末顆粒,經由壓力提升與持壓時間加長,可以有效抑制雙分佈晶粒結構的產生,而得到均勻的微結構。並且利用熱機力學分析(Thermo-mechanical Analysis, TMA)觀察到冷均壓成型壓力、粉末粒度分佈與胚體熱物理性質關係,也完成了大型的高純氧化鋁工件的製作。而本研究在研磨加工方面,使用三種不同成分之銅基合金,包括Cu合金、Cu-15Sn合金及Cu-15Sn-10Ti合金。從穿透電子顯微鏡繞射圖與X光繞射兩個分析方法,都證實Cu-15Sn-10Ti基材之鑽石工具中,鑽石與合金基材的中間介面層之材料為碳化鈦。pin-on-disk型式磨耗試驗與震動頻譜觀察研磨加工時,Cu-15Sn-10Ti基材之鑽石工具,有很好的效能研磨於高純度氧化鋁工件與自銳性。本研究在應用方面,利用純度99.90%與99.14%的氧化鋁試片,於PECVD設備內,使用NF3/Ar為蝕刻電漿環境,並且利用了光放射光譜(Optical Emission Spectroscopy, OES)分別觀察在270℃、300℃與350℃時的氟原子於685.75nm與氬離子750nm特定波長的強度比值。此比值轉換為Arrhenius經驗式求得蝕刻能,得知高純度氧化鋁擁有比較高的蝕刻能與比較不易與蝕刻性電漿反應的結果。


    Large alumina components, as large as 300 mm, of high purity are used in the chemical vapor deposition reactor chamber in 12-inch semiconductor processes, which can effectively resist plasma erosion. Hence, the shaping technology of green body is an important issue, in addition to an efficient and secure sintered body CNC machining procedure. In semiconductor processing, thin film is deposited not only on silicon wafers, but also on the alumina components inside the reactor chamber. In order to stably fabricate integrated circuits on silicon wafers, a plasma cleaning process must be applied to clean the interior wall of the reactor chamber. Accordingly, it is also necessary to study the relation between alumina and the plasma etching gas. In this study, alumina components were shaped by cold isostatic pressing, using spray-dried alumina granules of six different granule size distributions pressed under different pressuring profiles. The results indicated a high density could be achieved using an alumina granule with a wider distribution, and applying a larger pressure for a longer pressing time, which could substantially suppress the formation of a bimodal microstructure subsequent to sintering. A thermo-mechanical analysis could reveal the differences in sintering arising from the variations in granule size of the spray-dried powder and green body shaping pressure on the sintering behavior, which is crucial to the success of making large alumina components. In the CNC machining of the sintered components, three different diamond tools using different bonding matrices were compared, including Cu, Cu-15Sn, and Cu-15Sn-10Ti (wt%). Using Cu-15Sn-10Ti as the bonding matrix, a TiC layer was formed between the diamond grits and the bonding matrix, which effectively improved the retention of diamond grits during grinding. A self-dreesing effect was achieved in the diamond tool using Cu-15Sn-10Ti as the bonding matrix, which was evidenced in the vibration measurement during CNC machining and the frictional force measurement in pin on disk test. Alumina components of two different purity levels, including 99.90% and 99.14% respectively, were then etched in a NF3/Ar plasma environment, and wave length intensity ratio of fluorine ion (685.75 nm) to argon ion (750 nm) at 270℃, 300℃ and 350℃, respectively, were then recorded using an optical emission spectroscope. The intensity ratio was then transferred into Arrhenius plot and the activation energy for the etching of alumina could be resolved. Alumina of higher purity possesses a higher activation energy of etching and was more difficult to etch in a NF3/Ar plasma environment.

    論文摘要 I ABSTRACT III 誌 謝 V 目 錄 VI 圖表索引 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文組織與結構 6 第二章 文獻回顧與理論探討 7 2.1 陶瓷粒子的分散 7 2.2 電雙層理論[49-52] 9 2.3 懸浮液的穩定性與立體空間穩定作用[51] 11 2.4 研磨分散機構 13 2.5 冷等均壓成型機構[58] 14 2.6 粉末顆粒大小與其分布在冷等均壓成型與燒結的影響 18 2.7 固態燒結理論與晶粒成長 19 2.7.1 燒結理論糢型 19 2.7.2 緻密化與晶粒成長[34, 46, 76, 78] 32 2.8 鑽石工具特性 34 2.8.1 鑽石工具成份與製程之分類 35 2.8.2 金屬基材結合鑽石相關之研究 37 2.9 震動頻譜應用於評估鑽石工具研磨加工氧化鋁的效能分析 41 2.10 半導體製程上的電漿(PLASMA)的基本原理[30, 92-94] 46 2.10.1. 電漿的成份 46 2.10.2. 電漿的產生 47 2.10.3. 電漿中的碰撞 48 2.10.4. 電漿的參數 52 2.10.5. 離子轟擊 58 2.10.6. 直流偏壓 59 2.11 半導體製程上的電漿(PLASMA)薄膜的沉積與蝕刻製程[30, 92-94] 63 2.11.1. 化學氣相沉積(Chemical Vapor Deposition,CVD) 63 2.11.2. 電漿蝕刻 68 2.12 電漿輔助化學氣相沉積法(PECVD)及電漿蝕刻反應器[23, 30, 92, 93] 76 2.12.1 製程的差異性 76 2.12.2. CVD反應室設計 76 2.12.3. 蝕刻反應室的設計 77 2.13 遙控電漿製程(REMOTE PLASMA PROCESSES)[92, 93] 79 2.13.1. 光阻剝落 79 2.13.2. 遙控電漿蝕刻(Remote Plasma Etch) 80 2.13.3. 遙控電漿清潔法(Remote Plasma Clean) 80 2.13.4. 遙控電漿CVD(RPCVD) 81 2.14. 高密度電漿[92, 93] 82 2.14.1. 感應耦合型電漿(ICP) 82 2.14.2. 電子迴旋共振(ECR) 84 2.15 介電質CVD反應室的清潔[92, 93] 86 2.15.1. RF電漿清潔 86 2.15.2. 遙控電漿清潔 88 2.15.3. 蝕刻製程終點 91 2.16 電漿薄膜沉積與氧化鋁表面之關係 95 2.17 放射光譜(OPTICAL EMISSION SPECTROSCOPY, OES)原理[23, 123] 104 2.18. 光放射光譜分析應用於具有環保的NF3/AR電漿與其功能 107 2.18.1. 環保議題與NF3/Ar電漿的使用的關係與其特性 107 2.18.2. 以光放射光譜分析應用於NF3/Ar電漿的功能 113 第三章 實驗與研究方法 121 3.1 粉末粒徑與其分佈於冷等均壓成型中對氧化鋁之影響 121 3.1.1. 粉末粒度與冷等均壓成型之關係與大型高純度氧化鋁物件的製作 121 3.1.2. 粉末顆粒與成型之重要儀器與設備 123 3.2 自銳性鑽石工具組成研磨加工於高純度氧化鋁效能分析 127 3.2.1. 震動頻譜之應用於研磨加工之效能評估 127 3.2.2. 自銳性鑽石工具基材組成與研磨加工之測試條件 129 3.3. 不同粗糙度的氧化鋁表面長SIO2膜機構設計 132 3.4 NF3/AR電漿蝕刻於氧化鋁機構設計 134 第四章 研究結果與討論 138 4.1 粉末顆粒大小與其分布在冷等均壓成型的影響 138 4.2 自銳性鑽石工具加工於氧化鋁研磨效能分析 183 4.2.1. 鑽石結合基材合金的分析 183 4.2.2. 研磨加工於氧化鋁之效能評估 185 4.3 PECVD電漿沉積SIO2膜於不同粗糙度的氧化鋁表面結果 206 4.4 NF3/AR電漿蝕刻於氧化鋁結果 214 第五章 結論 225 5.1 粉末顆粒大小與其分布在冷等均壓成型影響 225 5.2. 自銳性鑽石工具研磨加工於氧化鋁研磨效能分析 226 5.3. PECVD電漿沉積SIO2膜於不同粗糙度的氧化鋁表面 227 5.4. NF3/AR電漿蝕刻於氧化鋁 228 5.5. 總結 229 參考文獻 231 附錄 243 作者簡介 304

    1. 陳梧桐, 覃禹華, 范哲豪 and 謝孟玹, 2005 半導體工業年鑒. 2005, 新竹市: 工業技術研究院產業經濟與資訊服務中心.
    2. Randall M.German, Sintering Theory and Practice. 1996, New York: JOHN WILEY & SONS, INC.
    3. Michel Barsoum, Fundamentals of Ceramics. 2000, New York: McGraw-Hill Companies, Inc.
    4. Mohamed N. Rahaman, Ceramic Processing and Sintering. 1995, New York: Marcel Dekker, INC.
    5. Y. U. Z. Hsieh, J. F. Chen and S. T. Lin, Pressureless sintering of metal-bonded diamond particle composite blocks. Journal of Materials Science, 2000. 35(21): p. 5383-5387.
    6. T. Ellingson, Sintered abrasive tools, in US patent. 1999, Norton Company: USA.
    7. S. Ramanath, S. Y. Kuo, W. H. Willston and S. T. Buijan, Method for grinding precision components, in US patent. 2000, Norton Company: USA.
    8. T. Tanaka and Y. Isono, Influences of metal constituents to the characteristics and grinding abilities of metal bonded diamond wheel. Journal of Materials Processing Technology, 1997. 63(1-3): p. 175-180.
    9. Bing Ji, Delwin L. Elder, James H. Yang, Peter R. Badowski and Eugene J. Karwacki, Power dependence of NF3 plasma stability for in situ chamber cleaning. Journal of Applied Physics, 2004. 95(8): p. 4446-4451.
    10. Bing Ji, James H. Yang, Peter R. Badowski and Eugene J. Karwacki, Optimization and analysis of NF3 in situ chamber cleaning plasmas. Journal of Applied Physics, 2004. 95(8): p. 4452-4462.
    11. Kazuhide Ino, Iwao Natori, Akihiro Ichikawa and Tadahiro Ohmi, In situ chamber cleaning using halogenated-gas plasmas evaluated by plasma-parameter extraction. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1994. 33(1B): p. 505-509.
    12. Yuki Mitsui, Yutaka Ohira, Taisuke Yonemura, Tsuyoshi Takaichi, Akira Sekiya and Tatsuro Beppu, The possibility of carbonyl fluoride as a new CVD chamber cleaning gas. Journal of The Electrochemical Society, 2004. 151(5): p. 297-301.
    13. G. Cunge, B. Pelissier, O. Joubert, R. Ramos and C. Maurice, New chamber walls conditioning and cleaning strategies to improve the stability of plasma processes. Plasma Sources Science and Technology, 2005. 14(3): p. 599-609.
    14. A. Gottscho Richard and M. Donnelly Vincent, Optical emission actinometry and spectral line shapes in rf glow discharges. Journal of Applied Physics, 1984. 56(2): p. 245-250.
    15. M. Vogt, E. Kaendler, S. Martin and K. Drescher, Plasma-enhanced chemical vapour deposition of thin insulator films and reactor cleaning. Surface & Coatings Technology, 1993. 59(1-3): p. 306-309.
    16. Hsin-Pai Hsueh, Robert T. Mcgrath, Bing Ji, Brian S. Felker, John G. Langan and Eugene J. Karwacki. Ion energy distributions and optical emission spectra in NF3-based process chamber cleaning plasmas. 2001. Tempe, AZ, United States: American Institute of Physics Inc.
    17. Jason O. Clevenger, Melisa J. Buie and Nicole Sandlin. Effect of Chamber Seasoning on the Chrome Dry Etch Process. 2003. Yokohama, Japan: The International Society for Optical Engineering.
    18. V. Lisovskiy, J. P. Booth, K. Landry, D. Douai, V. Cassagne and V. Yegorenkov, Applying RF current harmonics for end-point detection during etching multi-layered substrates and cleaning discharge chambers with NF3 discharge. Vacuum, 2007. 82(3): p. 321-327.
    19. R. Ramos, G. Cunge, O. Joubert, N. Sadeghi, M. Mori and L. Vallier, Plasma/reactor walls interactions in advanced gate etching processes. Thin Solid Films, 2007. 515(12): p. 4846-4852.
    20. R. Ramos, G. Cunge, B. Pelissier and O. Joubert, Cleaning aluminum fluoride coatings from plasma reactor walls in SiCl 4/Cl2 plasmas. Plasma Sources Science and Technology, 2007. 16(4): p. 711-715.
    21. S. C. Kang, J. Y. Hwang, N. E. Lee, K. S. Joo and G. H. Bae, Evaluation of silicon oxide cleaning using F2/Ar remote plasma processing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005. 23(4): p. 911-916.
    22. K. E. Greenberg and J. T. Verdeyen, Kinetic processes of NF3 etchant gas discharges. Journal of Applied Physics, 1985. 57(5): p. 1596-1601.
    23. Dennis M. Manos and L. Flamm Daniel, Plasma Etching An Introduction. 1989, New York: Academic Press.
    24. K. E. Greenberg, G. A. Hebner and J. T. Verdeyen, Negative ion densities in NF3 discharges. Applied Physics Letters, 1984. 44(3): p. 299-300.
    25. V. Tarnovsky, A. Levin, K. Becker, R. Basner and M. Schmidt, Electron impact ionization of the NF3 molecule. International Journal of Mass Spectrometry and Ion Processes, 1994. 133(2-3): p. 175-185.
    26. S. Raux, K. C. Lai, H. Nguyen, M. Sarfaty, S. T. Li, J. Davidow and T. F. Huang, Comparative study of remote plasma sources for environmentally-friendly CVD chambers cleaning. IEEE International Conference on Plasma Science, 1999: p. 196.
    27. Kazuhide Ino, Iwao Natori, Akihiro Ichikawa, Raymond N. Vrtis and Tadahiro Ohmi, Plasma enhanced in situ chamber cleaning evaluated by extracted-plasma-parameter analysis. IEEE Transactions on Semiconductor Manufacturing, 1996. 9(2): p. 230-240.
    28. S. P. Gangoli, A. D. Johnson, A. A. Fridman, R. V. Pearce, A. F. Gutsol and A. Dolgopolsky, Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber. Journal of Physics D: Applied Physics, 2007. 40(17): p. 5140-5154.
    29. H. Reichardt, A. Frenzel and K. Schober, Environmentally friendly wafer production: NF3 remote microwave plasma for chamber cleaning. Microelectronic Engineering, 2001. 56(1-2): p. 73-76.
    30. Brain Chapman, Glow Discharge Processes SPUTTERING AND PLASMA ETCHING. 1980, JOHN WILEY & SONS: New York.
    31. T. Chevolleau, M. Darnon, T. David, N. Posseme, J. Torres and O. Joubert, Analyses of chamber wall coatings during the patterning of ultralow- k materials with a metal hard mask: Consequences on cleaning strategies. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2007. 25(3): p. 886-892.
    32. Barsoum Michel, Defects in Ceramics, in Fundamentals of Ceramics. 2000, The McGraw-Hill Companies, Inc.: New York. p. 184.
    33. Kirt R. Williams, Kishan Gupta and Matthew Wasilik, Etch rates for micromachining processing - Part II. Journal of Microelectromechanical Systems, 2003. 12(6): p. 761-778.
    34. Barsoum Michel, Sintering and Grain Growth, in Fundamentals of Ceramics. 2000, The McGraw-Hill Companies, Inc.: New York. p. 331.
    35. J. A. Aguilera and C. Aragon, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2004. 59(12): p. 1861-1876.
    36. M. Aflorid, D. G. Dimitriu and D. Dorohoi, Characterization of argon-oxygen discharge using Langmuir probe and optical emission spectroscopy measurements in 31st Conference on Plasma Physics London. 2004: London. p. 4.057.
    37. M. A. Worsley, S. F. Bent, N. C. M. Fuller and T. Dalton, Characterization of neutral species densities in dual frequency capacitively coupled photoresist ash plasmas by optical emission actinometry. Journal of Applied Physics, 2006. 100(8): p. 083301-10.
    38. J. W. Coburn and M. Chen, Dependence of F atom density on pressure and flow rate in CF4 glow discharges as determined by emission spectroscopy. Journal of Vacuum Science and Technology, 1981. 18(2): p. 353-356.
    39. J. W. Lee, M. H. Jeon, G. S. Cho, H. C. Yim, S. K. Chang, K. K. Kim, M. Devre, D. Johnson, J. N. Sasserath and S. J. Pearton, Development of advanced plasma process with an optical emission spectroscopy-based end-point technique for etching of AlGaAs over GaAs in manufacture of heterojunction bipolar transistors. Solid-State Electronics, 2002. 46(5): p. 773-775.
    40. J. F. Pierson, T. Czerwiec, T. Belmonte and H. Michel, Diagnostic of Ar-BCl3 microwave discharges by optical emission spectroscopy. Surface & Coatings Technology, 1997. 97(1-3 pt 1): p. 749-754.
    41. A. Qayyum, Shaista Zeb, M. A. Naveed, S. A. Ghauri, M. Zakaullah and A. Waheed, Diagnostics of nitrogen plasma by trace rare-gas-optical emission spectroscopy. Journal of Applied Physics, 2005. 98(10): p. 103303.
    42. H. S. Kim, Y. J. Sung, D. W. Kim, T. Kim, M. D. Dawson and G. Y. Yeom, Etch end-point detection of GaN-based devices using optical emission spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001. 82(1-3): p. 159-162.
    43. D a O Hope, T I Cox and V G I Deshmukh, Langmuir probe and optical emission spectroscopics of Ar and O2 plasmas. Vacuum, 1987. 37(3/4): p. 275-277.
    44. S. Qin and A. Mcteer, A Nonperturbing Real-Time In Situ Plasma Diagnosis Technique Using an Optical Emission Spectrometer (OES). Plasma Science, IEEE Transactions on, 2006. 34(4): p. 1052-1058.
    45. G. S. Cho, J. W. Lee, W. T. Lim, I. G. Baek, K. S. Cho and S. J. Pearton. Plasma Diagnosis and End-point Detection with an Optical Emission Spectroscopy during High Density Inductively Coupled BCL3 Plasma Etching. 2003. Jeju, South Korea: Institute of Electrical and Electronics Engineers Inc.
    46. 水谷 惟恭 and 尾崎 義治, 工業陶瓷製程. 2001, 台南市: 復漢.
    47. Nikkato, ed. 粉碎,分散,混合用Media Ball產品規格說明. 2000: Osaka, Japan.
    48. Robert J. Pugh and Lennart Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing. 1994, New York: Marcel Dekker, Inc.
    49. A. K. Nikumbh, Influence of PH on Rheological Properties of Al2O3 Slips. Journal of Materials Science, 1990. 25: p. 15.
    50. Dynamics, Technical User Manual “Theory : An Introduction to Electroacoustics”. 2001, USA: Colloidal Dynamics company ltd.
    51. 張有義 and 郭蘭生, 膠體及界面化學入門, ed. Duncan J Shaw. 2001, 台北: 高立圖書.
    52. Yoshihiro Hirata, Ichiroh Haraguchi and Yoshimi Ishhara, Particle Size Effect on Colloidal Processing of Oxide Podwers. Journal of Materials Research, 1992. 7(9): p. 2572.
    53. J. Davies and J. G. P. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. Journal of the European Ceramic Society, 2000. 20: p. 1539.
    54. S. Tsipas, P. Goodwin, H. B. Mcshane and R. D. Rawlings, Effect of high energy ball milling on titanium-hydroxyapatite powders. Powder Metallurgy, 2003. 46(1): p. 73-77.
    55. Ltd Mitsui Mining Co., SC MILL Instruction Manual Type SC100/32A-HC-ZZ. 2002, Mitsui Mining Co., LTD: Osaka, Japan. p. 23.
    56. Yoshihito Kondo, Yutako Hashizuka, Masae Nakahara, Kozo Yokota and Kozo Ishizaki, Influence of combination of Ball Diameters and Rotation Speed on Grinding Performance of Alumina by Ball Milling. Journal of the Ceramic Society of Japan, Int. Edition, 2000. 101: p. 797.
    57. R. M. German, Powder Metallurgy Science. Metal Powder Industries Federation. 1984, New Jersey.
    58. M. Koizumi and M. Nishihara, The Equipment and Methods in Cold Isostatic Pressing Molding, in Isostatic Pressing Tehnology and Applications. 1991, Elsevier Applied Science: London. p. 31-92.
    59. 黃坤祥, 粉末冶金學. 2003, 新竹縣: 粉末冶金協會.
    60. David W. Richerson, Modern Ceramic Engineering, Properties, Processing and Use in Design. 1992, USA: Marcel Dekker, Inc.
    61. Asea Metallurgy, Isostatic Pressing Technology Handbook, ASEA AB, Editor. 1984, ASEA METALLURGY.
    62. S. Strijbos, P. A. Vermeer and A. Broese Van Groenou, Recent Progress in Understanding Die Compaction of Powders. Journal of the American Ceramic Society, 1979. 62(1-2): p. 57-59.
    63. H. Kim, O. Gillia, P. Dore?Mus and D. Bouvard, Near net shape processing of a sintered alumina component: Adjustment of pressing parameters through finite element simulation. International Journal of Mechanical Sciences, 2002. 44(12): p. 2523-2539.
    64. H. G. Kim, H. M. Lee and K. T. Kim, Near-net-shape forming of ceramic powder under cold combination pressing and pressureless sintering. Journal of Engineering Materials and Technology, Transactions of the ASME, 2001. 123(2): p. 221-228.
    65. N. Shinohara, M. Okumiya, T. Hotta, K. Nakahira, M. Naito and K. Uematsu, Formation mechanisms of processing defects and their relevance to the strength in alumina ceramics made by powder compaction process. Journal of Materials Science, 1999. 34(17): p. 4271-4277.
    66. N. Shinohara, M. Okumiya, T. Hotta, K. Nakahira, M. Naito and K. Uematsu, Morphological changes in process-related large pores of granular compacted and sintered alumina. Journal of the American Ceramic Society, 2000. 83(7): p. 1633-1640.
    67. K. Uematsu, Immersion microscopy for detailed characterization of defects in ceramic powders and green bodies. Powder Technology, 1996. 88(3): p. 291-298.
    68. Keizo Uematsu, Jin-Young Kim, Masayori Miyashita, Nozomu Uchida and Katsuichi Saito, Direct observation of internal structure in spray-dried alumina granules. Journal of the American Ceramic Society, 1990. 73(8): p. 2555-2557.
    69. K. Uematsu and M. Saito, Liquid immersion technique coupled with infrared microscopy for direct observation of internal structure of ceramic powder compact, with alumina as an example. Journal of Materials Research, 1999. 14(12): p. 4463-4465.
    70. H. Abe, T. Hotta, M. Naito, N. Shinohara, M. Okumiya, H. Kamiya and K. Uematsu, Origin of strength variation of silicon nitride ceramics with CIP condition in a powder compaction process. Powder Technology, 2001. 119(2-3): p. 194-200.
    71. W. J. Walker Jr, J. S. Reed and S. K. Verma, Influence of granule character on strength and weibull modulus of sintered alumina. Journal of the American Ceramic Society, 1999. 82(1): p. 50-56.
    72. Kazunari Shinagawa, Yasushi Hirashima and Yoshihito Kondo, Microstructure and Sintering of Ceramic Green Compacts Described in a Constitutive Model. Journal of the Ceramic Society of Japan, 2000. 108(1): p. 65-69.
    73. Anze Shui, Atsushi Makiya, Satoshi Tanaka, Nozomu Uchida and Keizo Uematsu, Effect of Cold Isostatic Pressing on Microstructure and Shrinkage Anisotropy during Sintering of Uniaxially Pressed Alumina Compacts. Journal of the Ceramic Society of Japan, 2002. 110(4): p. 264-269.
    74. Noboru Miyata, Yoichi Ishida, Tatsuya Shiogai and Yohtaro Matsuo, Effect of characteristics of compressive deformation of ceramic granules on CIP compaction behavior and sinterability (part 1) - the effect of characteristics of ceramic granules on CIP compaction behavior. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 1995. 103(1204): p. 1275-1281.
    75. R. L. Coble, Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts. Journal of Applied Physics, 1961. 32(5): p. 793-799.
    76. Mohamed N. Rahaman, Sintering of Ceramics. 2008, USA: CRC Press, Taylor & Francis Group.
    77. R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models. Journal of Applied Physics, 1961. 32(5): p. 787-792.
    78. Yet-Ming Chiang, Dunbar P. Birnie and W. David Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering. 1997, New York: John Wiley & Sons, Inc.
    79. H. K. Tonshoff, Mh. Hillmann-Apmann and J. Asche, Diamond tools in stone and civil engineering intustry: cutting principles, wear and applications. Diamond and Related Materials, 2002. 11: p. 736-741.
    80. R. E. Tressler, R. A. Langensiepen and R. C. Bradt, Surface Effects on Strength-vs-Grain-Size Relations in Polycrystalline Alumina. Journal of American Ceramic Society, 1974. 57: p. 226.
    81. J. Picone, Advancing the Abrasive Bond.
    82. L. Froyen, B. Decaudin and F. Lemoisson, P/M Alloys for Diamond Tools, Katholieke Universiteit Department of Metallurgy and Materials Engineering, Editor. 2003: LEUVEN, Neitherland.
    83. Z. Lin and R. A. Queeney, Interface bonding in a diamond/metal matrix composite. Modern Developments in Powder Metallurgy, 1988. 20: p. 443-450.
    84. Hitoshi Onishi, Yosihito Kondo, Shin Yamamoto, Akira Tsukuda and Kozo Ishizaki, Fabrication of porous cast-iron bonded diamond grinding wheels and their evaluation to grind hard-to-grind ceramics. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 1996. 104(1211): p. 610-613.
    85. Wen-Chung Li, Cheng Liang and Shun-Tian Lin, Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy. Metallurgical and Materials Transactions A, 2002. 33A: p. 2163.
    86. Wen-Chung Li, Cheng Liang and Shun-Tian Lin, Heteroepitaxial Growth of a Nanocrystalline TiC Layer on a Diamond Substrate. Diamond and Related Materials, 2002. 11: p. 1366.
    87. S. F. Huang, H. L. Tsai and S. T. Lin, Laser Brazing of Diamond Grits Using a Cu-15Ti-10Snn Alloy. Materials Transactions, 2002. 43: p. 2604.
    88. R. M. Andrews, S. T. Buijan, S. Ramanath and E. G. Geary, Superabrasive wheel with active bond, in US patent. 2001 Norton Company: USA.
    89. Y. Z. Hsieh and S. T. Lin, Diamond tool bits with iron alloys as the binding matrices. Materials Chemistry and Physics, 2001. 72(2): p. 121-125.
    90. S. Ramanath and R. M. Andrews, Stiffly Bonded Thin Abrasive Wheel. 2000: USA.
    91. Wowk and Victor, Machinery Vibration Measurement and Analysis. 1991, New York: McGraw-Hill.
    92. Hong Xiao, Etching, in Introduction to Semiconductor Manufactureing Technology. 2007, 台灣培生教育出版股份有限公司.
    93. 莊達人, 蝕刻, in VLSI 製造技術. 2007, 高立圖書有限公司.
    94. 施敏, 微影與蝕刻, in 半導體元件物理與製造技術. 2007, 交大出版社: 台灣新竹市. p. 659.
    95. A. K. Sinha, H. J. Levinstein, T. E. Smith, G. Quintana and S. E. Haszko, Journal of Electrochemistry Society, 1978. 125(601).
    96. N. Hayasaka, H. Miyajima, Y. Nakasaki and R. Katsumata, in International. Conference of Solid State Devices and Materials. 1995. p. 157-159.
    97. T. Tamura, Y. Inoue, M. Satoh, H. Yoshitaka and J. Sakai, Japan Journal of Applied Physics, 1996. 35: p. 2526.
    98. K. Endoh, T. Tatsumi, Y. Matsubara and T. Horiuchi, Japan Journal of Applied Physics, 1998. 37: p. 1809.
    99. E. Maruyama, Y. Hishikawa, M. Tanaka, S. Kiyama and S. Tsuda, Japan Journal of Applied Physics, 1998. 37(771).
    100. H. Kakinuma, M. Mohri, M. Sakamoto and T. Tsuruoka, Japan Journal of Applied Physics, 1991. 70: p. 7374.
    101. A. Grill, V. Patel and B. S. Meyerson, Journal of Electrochemistry Society, 1991. 138: p. 2362.
    102. 白藤 立, プラズマCVDによる薄膜の成膜技術.
    103. L. Flamm Daniel, Mechanisms of silicon etching in fluorine and chlorine containing plasmas. Pure & Applied Chemistry, 1990. 62(9): p. 1709-1720.
    104. J. W. Coburn and Harold F. Winters, Ion- and electron-assisted gas-surface chemistry---An important effect in plasma etching. Journal of Applied Physics, 1979. 50(5): p. 3189-3196.
    105. L. Flamm Daniel, M. Donnelly Vincent and Dale E. Ibbotson, Basic chemistry and mechanisms of plassma etching. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1983. 1(1): p. 23-30.
    106. Wen-Tien Tsai, Horng-Ping Chen and Wu-Yuan Hsien, A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. Journal of Loss Prevention in the Process Industries, 2002. 15(2): p. 65-75.
    107. Ltd. Applied Materials Co., AMAT 300 Producer Manual.
    108. Ltd. Applied Materials Co., Remote Technolgy Performance Analysis for Producer S 300. 2007, Forcera Materials Co., Ltd.
    109. Han Kyounghoon, Won Lee Jae, Chae Heeyeop, Hoon Han Kwang, Joo Park Kun, Kyun Park Sang and Sup Yoon En. Automatic end point detection of plasma etching process using the multi-way PCA of the whole optical emission spectrum. 2006. Busan, South Korea: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States.
    110. Herbert E. Litvak, End point control via optical emission spectroscopy. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1996. 14(1): p. 516-520.
    111. E. Korczynski, HDP-CVD: Trying to Lasso Lightning. Solid State Technology, 1996: p. 63.
    112. O. F. Schedlbauer, Cost reduction challenges in CVD chamber cleaning: Strategies to reduce gas cost. Future Fab International, 2002. 13: p. 164.
    113. 呂慶慧, 全球半導體產業PFCs排放減量現況技術報導, in Reduction of Perfluorocompound (PFC) Emissions. 2005, international SEMATECH Manufacturing: 台北市.
    114. G. S. Oehrlein, Surface Science, 1997. 386: p. 222.
    115. P. Singer, The Many Challenges of Oxide Etching, in Semiconductor International. 1997. p. 110.
    116. G. S. Oehrlein, S. W. Robey and J. L. Lindstrom, Applied Physics Letters, 1988. 52: p. 1170.
    117. A. Nagata, H.Ichihashi and Y. Horiike, Japan Journal of Applied Physics, 1989. 25: p. 2368.
    118. P. E. Riley and D. A. Hanson, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1989. 7: p. 1352.
    119. H. O. Blom, S. Berg, C. Nender and H. Norstrom, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1989. 7: p. 1321.
    120. M. T. Kim, Applied Surface Science, 2003. 21: p. 289.
    121. J. W. Coburn and Harold F. Winters, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1979. 16: p. 391.
    122. M. Quirk and J. Serda, Semiconductor manufacturing Technology. 2001: Pearson Education, Inc.
    123. Irving P. Herman, Optical Diagnostics for Thin Flim Processing, in Optical Diagnostics for Thin Flim Processing. 1996, Academic Press: New York. p. 157.
    124. Marinelli L. and Worth W., Global Warming: A White Paper on the Science, Polices and Control Technologies that Impact the U.S. Semiconductor Industry. 1994, Technology Transfer.
    125. V. M. Donnelly, D. L. Flamm, W. C. Dautremont-Smith and D. J. Werder, Anisotropic etching of SiO2 in low-frequency CF4/O2 and NF3/Ar plasmas. Journal of Applied Physics, 1984. 55(1): p. 242-252.
    126. R. C. Weast, Handbook of Chemistry and Physics. 70th ed. 1990, Boca Raton, FL: CRC.
    127. Robert M. Reese and Vernon H. Dibeler, Ionization and Dissociation of Nitrogen Trifluoride by Electron Impact. The Journal of Chemical Physics, 1956. 24(6): p. 1175-1177.
    128. Hsin-Pai Hsueh, Robert T. Mcgrath, Bing Ji, Brian S. Felker, John G. Langan and Eugene J. Karwacki, Ion energy distributions and optical emission spectra in NF3-based process chamber cleaning plasmas. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2001. 19(4): p. 1346-1357.
    129. J. W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density. Journal of Applied Physics, 1980. 51(6): p. 3134-3136.
    130. V. M. Donnelly. A simple optical emission method for measuring percent dissociations of feed gases in plasmas: Application to Cl2 in a high-density helical resonator plasma. in The 42nd national symposium of the American Vacuum Society. 1996. Mineapolis, Minnesota (USA): AVS.
    131. M. V. Malyshev and V. M. Donnelly. Determination of electron temperatures in plasmas by multiple rare gas optical emission, and implications for advanced actinometry. in The 43rd national symposium of the American Vacuum Society. 1997. Philadelphia, Pennsylvania (USA): AVS.
    132. M. V. Malyshev and V. M. Donnelly, Trace rare gases optical emission spectroscopy: Nonintrusive method for measuring electron temperatures in low-pressure, low-temperature plasmas. Physical Review E, 1999. 60(5): p. 6016.
    133. M. V. Malyshev, V. M. Donnelly and S. Samukawa, Ultrahigh frequency versus inductively coupled chlorine plasmas: Comparisons of Cl and Cl[sub 2] concentrations and electron temperatures measured by trace rare gases optical emission spectroscopy. Journal of Applied Physics, 1998. 84(3): p. 1222-1230.
    134. Daniel L. Flamm, Vincent M. Donnelly and John A. Mucha, The reaction of fluorine atoms with silicon. Journal of Applied Physics, 1981. 52(5): p. 3633-3639.
    135. Olle Skrinjar and Per-Lennart Larsson, Cold compaction of composite powders with size ratio. Acta Materialia, 2004. 52(7): p. 1871-1884.
    136. Osmi Abe, Shoichi Iwai, Shuzo Kanzaki, Masayoshi Ohashi and Hideyo Tabata, Influence of Size and Shape on Homogeneity of Powder Compacts Formed by Cold Isostatic Pressing - (Part 1). Press Forming of Thick Cylinders. Yogyo Kyokai Shi/Journal of the Ceramic Society of Japan, 1986. 94(10): p. 1092-1098.
    137. D. Bortzmeyer, Modelling ceramic powder compaction. Powder Technology, 1992. 70(2): p. 131-139.
    138. K. T. Kim, S. W. Choi and H. Park, Densification behavior of ceramic powder under cold compaction. Journal of Engineering Materials and Technology, Transactions of the ASME, 2000. 122(2): p. 238-244.
    139. K. I. Mori, K. Osakada and M. Miyazaki, Prediction of fracture in sintering of ceramic powder compact. International Journal of Machine Tools and Manufacture, 1997. 37(9): p. 1327-1336.
    140. I. Nettleship, R. J. Mcafee and W. S. Slaughter, Evolution of the grain size distribution during the sintering of alumina at 1350°C. Journal of the American Ceramic Society, 2002. 85(8): p. 1954-1960.
    141. S. H. Hong and D. Y. Kim, Effect of Liquid Content on the Abnormal Grain Growth of Alumina. Journal of the American Ceramic Society, 2001. 84(7): p. 1597-1600.
    142. I. J. Bae and S. Baik, Abnormal grain growth of alumina. Journal of the American Ceramic Society, 1997. 80(5): p. 1149-1156.
    143. Fultz, B., Howe and J. M., Transmission Electron Microscopy and Diffractometry of Materials. 2 ed. 2002, New York: Springer.
    144. David, B., Williams, C., Carter and Barry, Transmission Electron Microscopy. 1996, New York: Plenum Press.
    145. D. Evens, M. Nicholas and P. M. Scott, The wetting and bonding of diamonds by copper-tin-titanium alloys. Industrial Diamond Review, 1977.
    146. V. P. Chepeleva, Compaction of metallic and diamond-metal composites during sintering. Journal of Superhard Materials, 1984. 6: p. 65-69.
    147. P. M. Scott, M. Nicholas and B. Dewar, The wetting and bonding of diamonds by copper-base binary alloys. Journal of Materials Science, 1975. 10(11): p. 1833-1840.
    148. R. Standing and M. Nicholas, The wetting of alumina and vitreous carbon by copper-tin-titanium alloys. Journal of Materials Science, 1978. 13(7): p. 1509-1514.
    149. O. Dezellus, F. Hodaj, A. Mortensen and N. Eustathopoulos, Diffusion-limited reactive wetting: Spreading of Cu-Sn-Ti alloys on vitreous carbon. Scripta Materialia, 2001. 44(11): p. 2543-2549.
    150. J. J. Pak, M. L. Santella and R. J. Fruehan, Thermodynamics of Ti in Ag-Cu alloys. Metallurgical transactions. B, Process metallurgy, 1990. 21(2): p. 349-355.
    151. L. Flamm Daniel, M. Donnelly Vincent and A. Mucha John, The reaction of fluorine atoms with silicon. Journal of Applied Physics, 1981. 52(5): p. 3633-3639.
    152. W. R. Entley, J. G. Langan, B. S. Felker and M. A. Sobolewski, Optimizing utilization efficiencies in electronegative discharges: The importance of the impedance phase angle. Journal of Applied Physics, 1999. 86(9): p. 4825-4835.
    153. Dong-Pyo Kim and Chang-Il Kim. Etching characteristics of Bi4-xLaxTi3O12 (BLT) in inductively coupled CF4/Ar plasma. 2003. Xi an, China: Elsevier Science B.V.
    154. A. Qayyum, Shaista Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri and M. Zakaullah, Optical emission spectroscopy of Ar-N2 mixture plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007. 107(3): p. 361-371.
    155. S. B. Radovanov, B. Tomcik, Z. Lj. Petrovic and B. M. Jelenkovic, Optical emission spectroscopy of rf discharge in SF6. Journal of Applied Physics, 1990. 67(1): p. 97-107.
    156. Nicolae Tomozeiu, Optical emission studies of the gas phase during the silicon suboxide deposition by reactive r.f. magnetron-sputtering. Thin Solid Films, 2007. 515(16): p. 6582-6585.
    157. P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison and C. Dong, Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias. Thin Solid Films, 2001. 390(1-2): p. 51-58.

    無法下載圖示 全文公開日期 2013/12/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE