簡易檢索 / 詳目顯示

研究生: 蕭宇志
Yu-Chih Hsiao
論文名稱: 常壓電漿噴射束沉積氧空缺穩定四方氧化鋯改質石墨氈電極提升釩氧化還原液流電池性能
Oxygen Vacancy Stabilized Tetragonal Zirconia Modified Graphite Felt Electrodes Deposited by Atmospheric Pressure Plasma Jet to Enhance the Performance of Vanadium Redox Flow Batteries
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王冠文
Kuan-Wen Wang
周昭昌
Chau-Chang Chou
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 釩氧化還原液流電池石墨氈氧空缺氧化鋯旋風式常壓電漿噴射束協同效應
外文關鍵詞: Vanadium redox flow battery, Graphite felt, Oxygen vacancy, Zirconia, Tornado type atmospheric plasma jet, Synergistic effect
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要……………………………………………………………………………………………………………………………………………………………………………………………………………………I Abstract………………………………………………………………………………………………………………………………………………………………………………………………………II 致謝…………………………………………………………………………………………………………………………………………………………………………………………………………………IV 目錄…………………………………………………………………………………………………………………………………………………………………………………………………………………VI 圖目錄……………………………………………………………………………………………………………………………………………………………………………………………………………IX 表目錄……………………………………………………………………………………………………………………………………………………………………………………………………………XV 第一章 緒論…………………………………………………………………………………………………………………………………………………………………………………………………1 1.1 前言………………………………………………………………………………………………………………………………………………………………………………………………1 1.2 研究動機與目的………………………………………………………………………………………………………………………………………………………………………4 第二章 文獻回顧…………………………………………………………………………………………………………………………………………………………………………………………5 2.1 氧化還原液流電池…………………………………………………………………………………………………………………………………………………………………5 2.1.1 全釩液流電池介紹………………………………………………………………………………………………………………………………………………6 2.1.2 全釩液流電池反應機制……………………………………………………………………………………………………………………………………8 2.2 碳材料介紹……………………………………………………………………………………………………………………………………………………………………………10 2.2.1 嫘縈系石墨纖維…………………………………………………………………………………………………………………………………………………11 2.2.2 聚丙烯腈(PAN)基石墨纖維氈……………………………………………………………………………………………………………………11 2.2.3 PAN電極的選用…………………………………………………………………………………………………………………………………………………12 2.2.4 碳材料於全釩液流電池的應用……………………………………………………………………………………………………………………13 2.3 官能化石墨氈電極之反應機制與電極改質方法……………………………………………………………………………………………………14 2.3.1 酸處理……………………………………………………………………………………………………………………………………………………………………16 2.3.2 元素摻雜………………………………………………………………………………………………………………………………………………………………18 2.3.3 金屬及金屬氧化物修飾…………………………………………………………………………………………………………………………………21 2.3.4 常壓電漿處理………………………………………………………………………………………………………………………………………………………25 2.4 本實驗室過往利用常壓電漿沉積金屬氧化物之研究……………………………………………………………………………………………28 2.5 二氧化鋯陶瓷材料………………………………………………………………………………………………………………………………………………………………30 2.6 電漿基本介紹…………………………………………………………………………………………………………………………………………………………………………34 2.6.1 電漿原理及反應機制………………………………………………………………………………………………………………………………………35 2.6.2 電漿分類………………………………………………………………………………………………………………………………………………………………37 2.6.3 常壓電漿及其應用……………………………………………………………………………………………………………………………………………40 2.6.4 電漿表面改質技術……………………………………………………………………………………………………………………………………………42 2.6.5 電漿與介面反應…………………………………………………………………………………………………………………………………………………44 2.6.6 電漿催化中電漿與界面反應…………………………………………………………………………………………………………………………45 第三章 實驗設計與方法………………………………………………………………………………………………………………………………………………………………………47 3.1 實驗設計…………………………………………………………………………………………………………………………………………………………………………………47 3.2 實驗儀器與藥品……………………………………………………………………………………………………………………………………………………………………50 3.3 實驗儀器…………………………………………………………………………………………………………………………………………………………………………………51 3.3.1 常壓電漿噴射束 (Atmospheric pressure plasma jet, APPJ)………………………………………51 3.3.2 光譜分析儀 (Optical Emission Spectroscopy, OES)………………………………………………………52 3.3.3 熱電偶溫度計 (Thermocouple)………………………………………………………………………………………………………………53 3.3.4 熱顯像儀 (Thermal Imager)…………………………………………………………………………………………………………………54 3.3.5 熱重分析儀 (Thermogravimetric Analyzer, TGA)………………………………………………………………54 3.3.6 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE- SEM)…………………………………………………………………………………………………………………………………………………………………………………………………………………55 3.3.7 X光繞射儀 (X-ray Diffractometer, XRD)…………………………………………………………………………………56 3.3.8 水滴接觸角量測儀 (Water Contact Angle, WCA)……………………………………………………………………57 3.3.9 拉曼光譜分析儀 (Raman Spectroscopy, Raman)………………………………………………………………………58 3.3.10 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)……………………………59 3.3.11 電化學分析儀……………………………………………………………………………………………………………………………………………………60 第四章 結果與討論…………………………………………………………………………………………………………………………………………………………………………………61 4.1 前言……………………………………………………………………………………………………………………………………………………………………………………………61 4.2 電漿診斷分析…………………………………………………………………………………………………………………………………………………………………………63 4.2.1 電漿物種檢測………………………………………………………………………………………………………………………………………………………63 4.2.2 電漿溫度檢測………………………………………………………………………………………………………………………………………………………66 4.3 石墨氈與氧化鋯之結構分析……………………………………………………………………………………………………………………………………………69 4.3.1 石墨氈與硝酸氧鋯熱裂解溫度量測…………………………………………………………………………………………………………69 4.3.2 XRD晶體結構分析………………………………………………………………………………………………………………………………………………71 4.3.3 SEM表面形貌分析………………………………………………………………………………………………………………………………………………73 4.3.4 Raman表面D峰與G峰之缺陷分析………………………………………………………………………………………………………………76 4.3.5 水接觸角量測與時效測試………………………………………………………………………………………………………………………………78 4.3.6 XPS表面分析………………………………………………………………………………………………………………………………………………………83 4.4 電化學活性分析……………………………………………………………………………………………………………………………………………………………………91 4.4.1 循環伏安法 (Cyclic Voltammetry , CV)……………………………………………………………………………………91 4.4.2 電化學阻抗分析 (Electrochemical impedance spectroscopy , EIS)……………………97 4.4.3 全電池充放電與長效型穩定性測試………………………………………………………………………………………………………100 4.5 反應機制推導………………………………………………………………………………………………………………………………………………………………………106 第五章 結果與討論………………………………………………………………………………………………………………………………………………………………………………109 第六章 未來展望……………………………………………………………………………………………………………………………………………………………………………………111 參考文獻……………………………………………………………………………………………………………………………………………………………………………………………………113

    [1] IEA. (2016). World Energy Outlook. Available: https://www.iea.org/reports/world-energy-outlook-20162016.
    [2] J. Li, W. Wei, W. Zhen, Y. Guo, and B. Chen, "How green transition of energy system impacts China's mercury emissions," Earth's Future, vol. 7, no. 12, pp. 1407-1416, (2019).
    [3] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, pp. 56-58, (1991).
    [4] 黃俊傑, "鉛酸電池交流阻抗量測技術之研究," 國立高雄應用科技大學電機工程學系碩士論文, (2008).
    [5] 段仁豪, "電池量測技術之研究," 國立高雄應用科技大學電機工程學系碩士論文, (2005).
    [6] 經濟部能源局. (2021). 110年能源供給概況. Available: https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=14435
    [7] 行政院經濟部. (2021). 儲能產業政策推動辦理情形. Available: https://www.ey.gov.tw/File/783413302EA6931E?A=C
    [8] R. Carnegie, D. Gotham, D. Nderitu, and P. V. Preckel, "Utility scale energy storage systems," State Utility Forecasting Group. Purdue University, vol. 1, (2013).
    [9] MOXA. (2021). Best Practices to Enhance Industrial Cybersecurity – Energy Storage System. Available: https://www.moxa.com/en/articles/best-practices-enhance-industrial-cybersecurity-engergy-storage-system
    [10] J.-Z. Chen, C.-C. Hsu, C. Wang, W.-Y. Liao, C.-H. Wu, T.-J. Wu, H.-W. Liu, H. Chang, S.-T. Lien, and H.-C. Li, "Rapid atmospheric-pressure-plasma-jet processed porous materials for energy harvesting and storage devices," Coatings, vol. 5, no. 1, pp. 26-38, (2015).
    [11] T. Jirabovornwisut, B. Singh, A. Chutimasakul, J.-H. Chang, J.-Z. Chen, A. Arpornwichanop, and Y.-S. Chen, "Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery," Materials, vol. 14, no. 14, p. 3847, (2021).
    [12] C.-H. Lin, Y.-D. Zhuang, D.-G. Tsai, H.-J. Wei, and T.-Y. Liu, "Performance enhancement of vanadium redox flow battery by treated carbon felt electrodes of polyacrylonitrile using atmospheric pressure plasma," Polymers, vol. 12, no. 6, p. 1372, (2020).
    [13] A. W. Bayeh, D. M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, T.-R. Liu, T. H. Wondimu, K.-C. Wang, and C.-H. Wang, "Hydrogen-treated defect-rich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery," ACS Applied Energy Materials, vol. 2, no. 4, pp. 2541-2551, (2019).
    [14] L. H. Thaller, "Electrically rechargeable redox flow cells," in 9th Intersociety energy conversion engineering conference, pp. 924-928, (1974).
    [15] L. Thaller, "Electrically rechargeable redox flow cell," (1976).
    [16] P. Alotto, M. Guarnieri, and F. Moro, "Redox flow batteries for the storage of renewable energy: A review," Renewable and sustainable energy reviews, vol. 29, pp. 325-335, (2014).
    [17] R. Ye, D. Henkensmeier, S. J. Yoon, Z. Huang, D. K. Kim, Z. Chang, S. Kim, and R. Chen, "Redox flow batteries for energy storage: a technology review," Journal of Electrochemical Energy Conversion and Storage, vol. 15, no. 1, (2018).
    [18] C. P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, and F. C. Walsh, "Redox flow cells for energy conversion," Journal of power sources, vol. 160, no. 1, pp. 716-732, (2006).
    [19] Y. Zeng, X. Zhou, L. An, L. Wei, and T. Zhao, "A high-performance flow-field structured iron-chromium redox flow battery," Journal of Power Sources, vol. 324, pp. 738-744, (2016).
    [20] Y. Ahn, J. Moon, S. E. Park, J. Shin, J. W. Choi, and K. J. Kim, "High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries," Chemical Engineering Journal, vol. 421, p. 127855, (2021).
    [21] Á. Cunha, J. Martins, N. Rodrigues, and F. Brito, "Vanadium redox flow batteries: a technology review," International Journal of Energy Research, vol. 39, no. 7, pp. 889-918, (2015).
    [22] H. Jiang, W. Shyy, Y. Ren, R. Zhang, and T. Zhao, "A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries," Applied Energy, vol. 233, pp. 544-553, (2019).
    [23] M. Bartolozzi, "Development of redox flow batteries. A historical bibliography," Journal of Power Sources, vol. 27, no. 3, pp. 219-234, (1989).
    [24] L. Arenas, C. P. De León, and F. Walsh, "Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage," Journal of Energy Storage, vol. 11, pp. 119-153, (2017).
    [25] M. Kapoor and A. Verma, "Technical benchmarking and challenges of kilowatt scale vanadium redox flow battery," Wiley Interdisciplinary Reviews: Energy and Environment, vol. 11, no. 5, p. e439, (2022).
    [26] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas‐Kazacos, and T. M. Lim, "Recent advancements in all‐vanadium redox flow batteries," Advanced Materials Interfaces, vol. 3, no. 1, p. 1500309, (2016).
    [27] E. Sum, M. Rychcik, and M. Skyllas-Kazacos, "Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery," J. Power Sources;(Switzerland), vol. 16, no. 2, (1985).
    [28] E. Sum and M. Skyllas-Kazacos, "A study of the V (II)/V (III) redox couple for redox flow cell applications," Journal of Power sources, vol. 15, no. 2-3, pp. 179-190, (1985).
    [29] K. J. Kim, M.-S. Park, Y.-J. Kim, J. H. Kim, S. X. Dou, and M. Skyllas-Kazacos, "A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries," Journal of materials chemistry a, vol. 3, no. 33, pp. 16913-16933, (2015).
    [30] C.-I. Su, C.-C. Peng, and C.-Y. Lee, "Performance of viscose rayon based activated carbon fabric modified by sputtering silver and continuous plasma treatment," Textile research journal, vol. 81, no. 7, pp. 730-737, (2011).
    [31] J. W. Hearle, High-performance fibres. Elsevier, (2001).
    [32] 沈曾民, 新型碳材料:新材料與應用技術叢書. 曉園出版社有限公司, (2006).
    [33] R. Mathur, O. Bahl, and P. Sivaram, "Thermal degradation of polyacrylonitrile fibres," Current Science, vol. 62, no. 10, pp. 662-669, (1992).
    [34] D. Dixon, D. Babu, J. Langner, M. Bruns, L. Pfaffmann, A. Bhaskar, J. Schneider, F. Scheiba, and H. Ehrenberg, "Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application," Journal of Power Sources, vol. 332, pp. 240-248, (2016).
    [35] B. Sun and M. Skyllas-Kazakos, "Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution," Electrochimica Acta, vol. 36, no. 3-4, pp. 513-517, (1991).
    [36] T. Liu, X. Li, H. Zhang, and J. Chen, "Progress on the electrode materials towards vanadium flow batteries (VFBs) with improved power density," Journal of energy chemistry, vol. 27, no. 5, pp. 1292-1303, (2018).
    [37] 吳永富, 電化學工程應用. 五南圖書出版股份有限公司, (2019).
    [38] S. S. Nair, T. Saha, P. Dey, and S. Bhadra, "Thermal oxidation of graphite as the first step for graphene preparation: effect of heating temperature and time," Journal of Materials Science, vol. 56, no. 5, pp. 3675-3691, (2021).
    [39] A. W. Bayeh, D. M. Kabtamu, Y.-C. Chang, T. H. Wondimu, H.-C. Huang, and C.-H. Wang, "Carbon and metal-based catalysts for vanadium redox flow batteries: a perspective and review of recent progress," Sustainable Energy & Fuels, vol. 5, no. 6, pp. 1668-1707, (2021).
    [40] B. Sun and M. Skyllas-Kazacos, "Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment," Electrochimica acta, vol. 37, no. 7, pp. 1253-1260, (1992).
    [41] X. Wu, H. Xu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu, and H. Zhao, "Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery," Journal of power sources, vol. 263, pp. 104-109, (2014).
    [42] A. Di Blasi, O. Di Blasi, N. Briguglio, A. S. Aricò, D. Sebastián, M. Lázaro, G. Monforte, and V. Antonucci, "Investigation of several graphite-based electrodes for vanadium redox flow cell," Journal of Power Sources, vol. 227, pp. 15-23, (2013).
    [43] B. Sun and M. Skyllas-Kazacos, "Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments," Electrochimica Acta, vol. 37, no. 13, pp. 2459-2465, (1992).
    [44] K. Zhang, C. Yan, and A. Tang, "Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries," Journal of Materials Chemistry A, vol. 9, no. 32, pp. 17300-17310, (2021).
    [45] L. Wu, Y. Shen, L. Yu, J. Xi, and X. Qiu, "Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst," Nano Energy, vol. 28, pp. 19-28, (2016).
    [46] K. Amini, J. Gostick, and M. D. Pritzker, "Metal and metal oxide electrocatalysts for redox flow batteries," Advanced Functional Materials, vol. 30, no. 23, p. 1910564, (2020).
    [47] W. Wang and X. Wang, "Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery," Electrochimica Acta, vol. 52, no. 24, pp. 6755-6762, (2007).
    [48] Y. Xiang and W. A. Daoud, "Electrochemical enhancement of carbon paper by indium modification for the positive side of vanadium redox flow battery," Journal of The Electrochemical Society, vol. 164, no. 9, p. A2256, (2017).
    [49] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, and V. Sprenkle, "Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery," Nano letters, vol. 13, no. 3, pp. 1330-1335, (2013).
    [50] H. Jiang, Y. Zeng, M. Wu, W. Shyy, and T. Zhao, "A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries," Applied Energy, vol. 240, pp. 226-235, (2019).
    [51] M. Park, J. Ryu, and J. Cho, "Nanostructured electrocatalysts for all‐vanadium redox flow batteries," Chemistry–An Asian Journal, vol. 10, no. 10, pp. 2096-2110, (2015).
    [52] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, and Y. Dong, "PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery," Journal of Power Sources, vol. 250, pp. 274-278, (2014).
    [53] H. Zhou, Y. Shen, J. Xi, X. Qiu, and L. Chen, "ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries," ACS applied materials & interfaces, vol. 8, no. 24, pp. 15369-15378, (2016).
    [54] J.-Y. Guo, J.-A. Chen, S.-Y. Chen, M.-L. Lee, W.-R. Liu, and Y.-L. Kuo, "Reactive plasma oxygen-modified and nitrogen-doped soft carbon as a potential anode material for lithium-ion batteries using a tornado-type atmospheric pressure plasma jet," Electrochimica Acta, vol. 427, p. 140897, (2022).
    [55] J.-Z. Chen, W.-Y. Liao, W.-Y. Hsieh, C.-C. Hsu, and Y.-S. Chen, "All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets," Journal of Power Sources, vol. 274, pp. 894-898, (2015).
    [56] Y.-L. Kuo, Y.-M. Su, and J.-Y. Chang, "A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet," Thin solid films, vol. 570, pp. 215-220, (2014).
    [57] Y.-L. Kuo, Y.-M. Su, and H.-L. Chou, "A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance," Physical Chemistry Chemical Physics, vol. 17, no. 21, pp. 14193-14200, (2015).
    [58] Y.-L. Kuo, S. D. Kencana, and Y.-M. Su, "Oxygen vacancy levels on gadolinia-doped ceria interlayer deposited by atmospheric pressure plasma jet for solid oxide fuel cells," Ceramics International, vol. 44, no. 13, pp. 15262-15268, (2018).
    [59] Y.-L. Kuo, S. D. Kencana, Y.-M. Su, and H.-T. Huang, "Tailoring the O2 reduction activity on hydrangea-like La0. 5Sr0. 5MnO3 cathode film fabricated via atmospheric pressure plasma jet process," Ceramics International, vol. 44, no. 7, pp. 7349-7356, (2018).
    [60] Y.-M. Su, Y.-L. Kuo, C.-M. Lin, and S.-F. Lee, "One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet," Powder technology, vol. 267, pp. 74-79, (2014).
    [61] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, and C.-Y. Yu, "Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis," Journal of Nanoparticle Research, vol. 14, pp. 1-9, (2012).
    [62] S.-J. Shih, L.-Y. S. Chang, C.-Y. Chen, K. B. Borisenko, and D. J. Cockayne, "Nanoscale yttrium distribution in yttrium-doped ceria powder," Journal of Nanoparticle Research, vol. 11, pp. 2145-2152, (2009).
    [63] G. Jayanthi, S. Zhang, and G. L. Messing, "Modeling of solid particle formation during solution aerosol thermolysis: The evaporation stage," Aerosol Science and Technology, vol. 19, no. 4, pp. 478-490, (1993).
    [64] P. Manivasakan, A. Karthik, and V. Rajendran, "Mass production of Al2O3 and ZrO2 nanoparticles by hot-air spray pyrolysis," Powder technology, vol. 234, pp. 84-90, (2013).
    [65] W. Weppner, "Tetragonal zirconia polycrystals—a high performance solid oxygen ion conductor," Solid State Ionics, vol. 52, no. 1-3, pp. 15-21, (1992).
    [66] Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, "Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution," Chemistry of materials, vol. 16, no. 13, pp. 2615-2622, (2004).
    [67] J. V. Spirig, R. Ramamoorthy, S. A. Akbar, J. L. Routbort, D. Singh, and P. K. Dutta, "High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference," Sensors and Actuators B: Chemical, vol. 124, no. 1, pp. 192-201, (2007).
    [68] P. Attri, B. Arora, and E. H. Choi, "Retracted article: Utility of plasma: A new road from physics to chemistry," Rsc Advances, vol. 3, no. 31, pp. 12540-12567, (2013).
    [69] A. H. Heuer, "Transformation toughening in ZrO2‐containing ceramics," Journal of the American Ceramic Society, vol. 70, no. 10, pp. 689-698, (1987).
    [70] S. Badwal, "Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia," Journal of materials science, vol. 19, pp. 1767-1776, (1984).
    [71] A. Oliveira and M. Torem, "The influence of precipitation variables on zirconia powder synthesis," Powder Technology, vol. 119, no. 2-3, pp. 181-193, (2001).
    [72] I. Štefanć, S. Musić, G. Štefanić, and A. Gajović, "Thermal behavior of ZrO2 precursors obtained by sol–gel processing," Journal of Molecular Structure, vol. 480, pp. 621-625, (1999).
    [73] G. Dell'Agli and G. Mascolo, "Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature," Journal of the European Ceramic Society, vol. 20, no. 2, pp. 139-145, (2000).
    [74] N. Igawa, Y. Ishii, T. Nagasaki, Y. Morii, S. Funahashi, and H. Ohno, "Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study," Journal of the American Ceramic Society, vol. 76, no. 10, pp. 2673-2676, (1993).
    [75] D. E. Collins and K. J. Bowman, "Influence of atmosphere on crystallization of zirconia from a zirconium alkoxide," Journal of materials research, vol. 13, no. 5, pp. 1230-1237, (1998).
    [76] S. Jana and P. K. Biswas, "Characterization of oxygen deficiency and trivalent zirconium in sol-gel derived zirconia films," Materials Letters, vol. 30, no. 1, pp. 53-58, (1997).
    [77] M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, "Metastability of tetragonal zirconia powders," Journal of the American Ceramic Society, vol. 68, no. 3, pp. 135-139, (1985).
    [78] M. A. Lieberman and A. J. Lichtenberg, "Principles of plasma discharges and materials processing," MRS Bulletin, vol. 30, no. 12, pp. 899-901, (1994).
    [79] 鍾宛庭, "電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理," 國立台灣科技大學 機械工程系,碩士論文, (2019).
    [80] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, no. 4, pp. 609-658, (2002).
    [81] 陳濡言, "以低溫常壓電漿表面改質軟性基板及接枝聚合溫度敏感型高分子," 國立台灣科技大學 機械工程系,碩士論文, (2012).
    [82] J. Peran and S. Ercegović Ražić, "Application of atmospheric pressure plasma technology for textile surface modification," Textile Research Journal, vol. 90, no. 9-10, pp. 1174-1197, (2020).
    [83] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, (1998).
    [84] U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," IEEE Transactions on plasma science, vol. 30, no. 4, pp. 1400-1408, (2002).
    [85] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, (2006).
    [86] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, (2002).
    [87] Z. Chen, G. Garcia Jr, V. Arumugaswami, and R. E. Wirz, "Cold atmospheric plasma for SARS-CoV-2 inactivation," Physics of Fluids, vol. 32, no. 11, p. 111702, (2020).
    [88] A. Hoffmann, M. Uhl, M. Ceblin, F. Rohrbach, J. Bansmann, M. Mallah, H. Heuermann, T. Jacob, and A. J. Kuehne, "Atmospheric Pressure Plasma-Jet Treatment of PAN-Nonwovens—Carbonization of Nanofiber Electrodes," C, vol. 8, no. 3, p. 33, (2022).
    [89] D. Kolacyak, J. Ihde, C. Merten, A. Hartwig, and U. Lommatzsch, "Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet," Journal of colloid and interface science, vol. 359, no. 1, pp. 311-317, (2011).
    [90] G. Nageswaran, L. Jothi, and S. Jagannathan, "Plasma assisted polymer modifications," in Non-thermal plasma technology for polymeric materials: Elsevier, (2019), pp. 95-127.
    [91] L. Karam, C. Jama, P. Dhulster, and N.-E. Chihib, "Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging," J. Mater. Environ. Sci, vol. 4, no. 5, pp. 798-821, (2013).
    [92] O.-J. Kwon, S. Tang, S.-W. Myung, N. Lu, and H.-S. Choi, "Surface characteristics of polypropylene film treated by an atmospheric pressure plasma," Surface and Coatings Technology, vol. 192, no. 1, pp. 1-10, (2005).
    [93] V. Anand, S. Ghosh, M. Ghosh, G. M. Rao, R. Railkar, and R. Dighe, "Surface modification of PDMS using atmospheric glow discharge polymerization of tetrafluoroethane for immobilization of biomolecules," Applied surface science, vol. 257, no. 20, pp. 8378-8384, (2011).
    [94] G. Legeay, F. Poncin-Epaillard, and C. Arciola, "New surfaces with hydrophilic/hydrophobic characteristics in relation to (no) bioadhesion," The International journal of artificial organs, vol. 29, no. 4, pp. 453-461, (2006).
    [95] M. Ozdemir, C. U. Yurteri, and H. Sadikoglu, "Surface treatment of food packaging polymers by plasmas," Food technology, (1999).
    [96] P. K. Chu, J. Chen, L. Wang, and N. Huang, "Plasma-surface modification of biomaterials," Materials Science and Engineering: R: Reports, vol. 36, no. 5-6, pp. 143-206, (2002).
    [97] E. Bartis, A. Knoll, P. Luan, J. Seog, and G. Oehrlein, "On the interaction of cold atmospheric pressure plasma with surfaces of bio-molecules and model polymers," Plasma Chemistry and Plasma Processing, vol. 36, pp. 121-149, (2016).
    [98] W.-C. Chung and M.-B. Chang, "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, vol. 62, pp. 13-31, (2016).
    [99] L. Kapokova, S. Pavlova, R. Bunina, G. Alikina, T. Krieger, A. Ishchenko, V. Rogov, and V. Sadykov, "Dry reforming of methane over LnFe0. 7Ni0. 3O3− δ perovskites: Influence of Ln nature," Catalysis Today, vol. 164, no. 1, pp. 227-233, (2011).
    [100] G. Moradi, M. Rahmanzadeh, and F. Khosravian, "The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming," Journal of CO2 Utilization, vol. 6, pp. 7-11, (2014).
    [101] E. Sun and W. Cao, "Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications," Progress in materials science, vol. 65, pp. 124-210, (2014).
    [102] T. Takuma, "Field behaviour at a triple junction in composite dielectric arrangements," IEEE transactions on electrical insulation, vol. 26, no. 3, pp. 500-509, (1991).
    [103] F. Holzer, F. Kopinke, and U. Roland, "Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants," Plasma chemistry and plasma processing, vol. 25, pp. 595-611, (2005).
    [104] W.-C. Chung, K.-L. Pan, H.-M. Lee, and M.-B. Chang, "Dry reforming of methane with dielectric barrier discharge and ferroelectric packed-bed reactors," Energy & fuels, vol. 28, no. 12, pp. 7621-7631, (2014).
    [105] V. Demidyuk and J. C. Whitehead, "Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system," Plasma chemistry and plasma processing, vol. 27, pp. 85-94, (2007).
    [106] 奇邑光電有限公司. UV-Visible紫外可見光光譜儀. Available: https://gieoptics.com/spectrometer_02.php
    [107] T. FLIR. Available: https://www.flir.asia/support/products/e53/#Overview
    [108] 國. 貴重儀器中心. Available: https://sppic.ntust.edu.tw/p/404-1058-51525.php?Lang=zh-tw
    [109] A. A. KUMAR, "Development of porous titanosilicate-based hybrid nanocomposites for photocatalytic applications under uv and solar light irradiation," National institute of technology warangal, (2017).
    [110] 欣創達科技有限公司. 光學視頻接觸角量測儀. Available: https://www.sindatek.com/100sb.htm
    [111] 利泓科技. 拉曼光譜儀分析原理. Available: https://www.rightek.com.tw/product_list/raman%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%84%80%E5%88%86%E6%9E%90%E5%8E%9F%E7%90%86/
    [112] N. H. Turner, B. I. Dunlap, and R. J. Colton, "Surface analysis: x-ray photoelectron spectroscopy, Auger electron spectroscopy and secondary ion mass spectrometry," Analytical Chemistry, vol. 56, no. 5, pp. 373-416, (1984).

    無法下載圖示 全文公開日期 2028/07/25 (校內網路)
    全文公開日期 2028/07/25 (校外網路)
    全文公開日期 2028/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE