簡易檢索 / 詳目顯示

研究生: 郭柏岑
Po-Tsen Kuo
論文名稱: 用於正交分頻多工系統之通道估測設計與實現
Design and Implementation of Channel Estimation for OFDM System
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 吳乾彌
Chen-Mie Wu
呂政修
Jenq-Shiou Leu
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 64
中文關鍵詞: MIMOLMMSE通道自相關矩陣MSE封包錯誤率
外文關鍵詞: MIMO, LMMSE, channel autocorrelation matrix, MSE, PER
相關次數: 點閱:196下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對SISO及 MIMO OFDM系統提出近似Linear Minimum Mean Square Error (LMMSE)通道估測演算法之設計與實現,我們分別探討通道自相關矩陣為單位矩陣及固定的RMS delay spread兩種情況,這兩種演算法都是以Least Square (LS)為基底加以建構且需要使用FFT輸出訊號的SNR來做運算。在SISO時,傳送端會發送兩筆資料相同的訓練符元到接收端,利用此特性可設計一個電路針對FFT輸出訊號的SNR做估測,然而在 MIMO時,天線1及2會分開傳送資料,無法使用兩筆訓練符元做SNR檢測。從模擬結果得知,通道自相關矩陣定義為單位矩陣的作法在SISO可以節省更多面積,Mean Square Error(MSE)及封包錯誤率的表現同樣比較好,在 MIMO也可節省不少面積,MSE及PER在13dB後也會優於固定delay spread的方法。本論文以此演算法為目標,採用Verilog硬體描述語言設計,利用Xilinx ISE進行合成,最後將電路實現於FPGA開發板上。


    This thesis proposes the hardware design and implementation of a quasi-Linear Minimum Mean Square Error (LMMSE) channel estimation algorithm for SISO and MIMO OFDM systems. We discuss two cases of the channel autocorrelation matrix: identity matrix and fixed channel RMS delay spread. In both cases our method is based on the Least Squares (LS) algorithm and requires the SNR of the FFT output signal. For the SISO system, the transmitter sends two identical training symbols to the receiver, which allows the design of a circuit to estimate the SNR of the FFT output signal. However, for the MIMO system, the two identical training symbols are separately transmitted in both antennas and hence cannot perform SNR estimation. Simulation results show that, when the channel autocorrelation matrix is defined as an identity matrix, the proposed algorithm saves more area on the FPGA, and improves Mean Square Error (MSE) and Packet Error Rate (PER) performance. Moreover, for the MIMO system, it also reduces circuit area, and has better MSE and PER performance than the method with fixed RMS delay spread for SNR ≥ 13dB. Using Verilog HDL for design and Xilinx ISE for circuit synthesis, this thesis implements this algorithm on an FPGA development board.

    圖目錄 v 表目錄 vii 第一章 緒論 第二章 OFDM系統架構 2.1 正交分頻多工系統 2.1.1 OFDM的調變(Modulation) 2.1.2 OFDM的正交姓(Orthogonality) 2.1.3 OFDM的解調變(Demodulation) 2.1.4 OFDM調變/解調變的數位化 2.1.5 護衛區間(Guard interval)與循環字首(Cyclic Prefix) 2.2 多輸入多輸出系統 2.2.1 循環位移分集技術(Cyclic Shift Diversity,CSD) 2.3 封包架構 2.4 傳送端與接收端架構 第三章 實作平台 3.1 Warp v3 FPGA開發板 3.2 模擬工具與平台 3.2.1 產生Netlist方式 3.2.2 XPS 3.2.3 SDK 3.2.4 Xilinx ISE Design Tool 第四章 通道估測演算法 4.1 通道估測模型 4.2 通道模型 4.3 線性最小均方差演算法 4.4 近似線性最小均方差演算法(Proposed LMMSE) 4.5 估測 4.6 Mean Square Error(MSE) 第五章 通道估測電路設計 5.1 電路設計流程 5.2 演算法電路設計 5.2.1 SISO電路架構 5.2.2 MIMO電路架構 第六章 模擬結果與分析 6.1 錯誤率檢測系統 6.1.1 Bit Error Rate(BER) 6.1.2 Packet Error Rate(PER) 6.2 SISO之PER比較 6.3 MIMO之PER比較 第七章 結論 附錄A 證明(4.6)通道自相關矩陣 參考文獻

    [1] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer
    (PHY) specifications. IEEE Std 802.11, 1999.
    [2] IEEE 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 5 GHz Band. IEEE Std802.11a, 1999.
    [3] IEEE 802.11g, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11g, 2003.
    [4] IEEE 802.11n, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) specifications: High-speed Physical Layer in the 2.4 GHz Band. IEEE Std802.11n, 2009.
    [5] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. (Geoffrey) Li, M. A. Ingram and T. G. Pratt “Broadband MIMO-OFDM Wireless Communications,” in Proceedings of the IEEE, vol. 92, no. 2, Feb. 2004, pp.271-294.
    [6] S. B. Weinstein and P. M. Ebert, ”Data transmission by frequency division multiplexing using Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19, pp.628-634, Oct. 1971.
    [7] A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computational complexity algorithms,” IEEE int. Conf. Acoust., Speech, Signal Processing , pp. 964-967, 1980.
    [8] Y. Shen and E. Martinez. Channel Estimation in OFDM Systems. Application Note, Freescale Semiconductor, 2006.
    [9] J. J. Beek, M. Sandell, and P. O. Borjesson “ML Estimation of Frequency Offset in OFDM Systems,” IEEE Transactions on Signal Processing,vol. 45, no. 7, pp.1800–1805, July 1997.
    [10] A. Burg, S. Häne, D. Perels, P. Luethi, N. Felber, and W. Fichtner, “Algorithm and VLSI architecture for linear MMSE detection in MIMO-OFDM systems,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Kos, Greece, pp. 4102–4105, May 2006.
    [11] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition,” in Proc. of IEEE ISCAS, pp. 1421–1424, May 2007.
    [12] H. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B. Daneshrad, “An efficient FPGA based MIMO-MMSE Detector,” in Proc. of EUSIPCO, pp. 1131–1135, Sep. 2007.
    [13] S. Yoshizawa, Y. Yamauchi, Y. Miyanaga, “A complete pipelined MMSE detection architecture in a 4x4 MIMO-OFDM receiver,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1248–1251, May 2008.
    [14] H. S. Kim, W. Zhu, J. Bhatia, K. Mohammed, A. Shah, and B. Daneshrad, “A practical, hardware friendly MMSE detector for MIMO-OFDM-based systems,” EURASIP J. Adv. Signal Process., vol. 2008, pp. 1–14, Jan. 2008.
    [15] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. Brjesson, “OFDM channel estimation by singular value decomposition,” IEEE Trans. Commun., vol. 46, no. 7, pp. 931–939, Jul. 1998
    [16] S. Shin, Q. Yang, and K. S. Kwak, “Performance analysis of MB-OFDM system using SVD aimed LMMSE channel estimation,” in Proc. IEEE International Conference on Ultra-Wideband (ICUWB), Singapore, Sep. 2007.
    [17] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On channel estimation in OFDM systems,” in Proc. IEEE Vehicular Technology Conf., vol. 2, Chicago, IL, Jul. 1995, pp. 815–819.
    [18] W.Y. Zou, and Y. Wu, “COFDM: An overview,” IEEE Trans. on
    Broadcasting, vol. 41, no. 1, pp. 1 –8, Mar. 1995.
    [19] S. M. Jackman, M. Swartz, M. Burton, T. W. Head, “Certify Wireless Design professional Official Study Guide” CWN Exam PW0-250, PP.340-343, Feb. 2011
    [20] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,
    “V-BLAST: An architecture for realizing very high data rates over rich scattering wireless channels,” in Proc. ISSSE-98, Sep. 1998, pp. 295-300
    [21] M. R. McKay and I. B. Collings, ”Capacity and performance of MIMO-BICM with zero forcing receivers, ” IEEE Trans. Commun., vol. 53, no. 1, pp. 74-83, Jan. 2005.
    [22] M. Honqlei and M. J. Juntti, ”Space-time channel estimation and performance analysis for wireless MIMO-OFDM systems with spatial correlation,” IEEE Trans. Vehic. Tech., vol. 54, pp. 2003-2016, Nov. 2005.
    [23] IEEE Std 802.11a-1999 Supplement to IEEE Standard for Information
    technology-telecommunications and information exchange between systems –
    local and metropolitan area networks - specific requirements - Part 11: Wireless
    LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
    1999.
    [24] WARP Forums:http://warpproject.org/trac/wiki/HardwareUsersGuides/WARPv3
    [25] 劉紹漢, 全華, SOC系統晶片設計-使用Xilinx EDK, 2014.
    [26] 徐文波, 田耘, Xilinx FPGA開發實用教學, 佳魁資訊, 2013.
    [27] P. Koopman, “32-bit cyclic redundancy codes for Internet applications”, Dependable Systems and Networks, Proc. Int. Conf. on, IEEE, Wash., DC, USA, pp. 459–468, Jun. 2002

    QR CODE