簡易檢索 / 詳目顯示

研究生: 蔡孟哲
Meng-Che Tsai
論文名稱: 基於人眼感知的VR頭戴顯示器雜散光檢測方法
Stray Light Detection Methodology for VR Head-Mounted Display Based on Human Eye Perception
指導教授: 李宗憲
Tsung-Xian Lee
口試委員: 林晃巖
Hoang-Yan Lin
歐立成
Li-Chen Ou
陳怡永
Yi-Yung Chen
張忠翔
Chung-Hsiang Chang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 105
中文關鍵詞: 虛擬實境菲聶爾成像透鏡人眼感知雜散光定性預測
外文關鍵詞: Virtual Reality, Fresnel imaging lens, Human eye perceived stray light, Qualitative forecasting
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來虛擬實境(Virtual reality, VR)與擴增實境(Augmented reality, AR)的立體視覺、沉浸式體驗及視覺資訊接收的即時性獲得了普羅大眾與科技業的青睞,紛紛視其顯示載體:頭戴顯示器(Head-mounted display, HMD)為下世代最具潛力的計算與通訊平台。HMD作為一結合光學透鏡與雙目顯示的虛像光學顯示設備,其所帶來的視覺衝擊對於使用者視覺所感知的影像品質變化更是複雜許多。為此,本研究結合基於VR裝置的心理物理學實驗(Psychophysical experiment)與量測影像,搭配機器學習建立一套以人眼為判定標準的雜散光檢測方法:以心理物理學實驗記錄受測者恰可感知雜散光閾值做為本研究資料訓練的目標,而廣角相機拍攝的VR顯示影像則透過進行一系列的影像處理程序,針對感興趣區域進行數據萃取,將取得的數據透過機器學習的演算法訓練並建立以人眼感知為基礎的雜散光評價模型。
    本研究從影像資料中萃取出四個有效的關鍵變數(刺激源影像之外半徑、刺激源影像之平均灰階值、雜散光影像之平均灰階值、雜散光影像之灰階值之標準差),並將之與三種目標值的標註(受測者群體的平均閾值、最小閾值、最大閾值)做為監督式學習所使用的資料,最後比較了四款監督式學習演算法(KNN, Logistic regression, SVM, Random forest)所建立出的模型之效能,四款演算法的準確率(Accuracy)皆高達約九成,亦證明了未來可根據需求,利用不同百分比的閾值來標註資料,以用於預測各式細分檢測規格等級的可行性。
    本研究成果不僅提供一個快速且有效的雜散光定性評價方法,並期待未來能藉此作為HMD光學系統設計、品質控管的依據,使雜散光的評價成為影像品質及VR/AR內容設計的關鍵指標之一。


    In recent years, the stereoscopic vision, immersive experience, and real-time visual information reception of Virtual Reality (VR) and Augmented Reality (AR) have been favored by the general public and the technology industry, and they have seen their device carrier: Head-Mounted Display (HMD) is one of the most promising computing and communication platforms for the next generation. HMD is a virtual image optical display device that combines the optical lens modules and binocular displays, and the visual impact it brings is much more complicated than the traditional display, and so does the impact to image quality performing.
    To this end, this research completed the establishment of a qualitative model from the combination of psychophysical experiments and measurement images based on VR devices. The recorded threshold data of stray light perception psychophysical experiment is used as the data training target, and the VR display image captured by the wide-angle camera is processed through a series of image processing procedures to extract variables in the range of interest. Through finished model training by the machine learning algorithm, an evaluation method for the human eye perceived stray light was established.
    This research extracts four effective key variables (the external radius of stimulus source image, the average of stimulus image’s grayscale value, the average of stray light image’s grayscale value, the standard deviation of stray light image’s grayscale value) from the image data. Then, combines them with three target labels (the average threshold, minimum threshold, and the maximum threshold of the subject group) used as supervised learning data. Finally, four supervised learning algorithms (KNN, Logistic regression, SVM, Random forest) are compared. The established model's effectiveness (accuracy) is as high as about 90% by all the four algorithms. It also proves that in the future, different percentages of thresholds can be used to label data according to demand to predict the feasibility of various subdivision inspection specifications.
    This research aims not only to provide a fast and effective stray light qualitative evaluation method but also to use it as a basis for HMD optical system design and quality control in the future so that the evaluation of stray light will become one of the key indicators of image quality and also apply to VR/AR content design.

    中文摘要 i ABSTRACT iii 誌謝 v 目錄 viii 圖目錄 x 表目錄 xii 第1章、 緒論 1 1.1 研究動機及目的 1 1.2 論文大綱與架構 4 第2章、 文獻探討 6 2.1 VR HMD成像原理 6 2.1.1 VR視覺光學模組 6 2.1.2 人眼結構組成 13 2.1.3 人眼光學性能 16 2.1.4 VR雜散光成像原理 22 2.2 適用於HMD雜散光量測的相機光學特性 26 2.3 現行之雜散光定量評價與改善方法 31 第3章、 實驗方法 34 3.1 實驗設計與設置 34 3.1.1 受測者資料 34 3.1.2 實驗設備與環境配置 35 3.1.3 實驗設計 37 3.1.4 實驗流程 41 3.2 實驗結果與分析 46 3.2.1 受測者變異 47 3.2.2 雜散光閾值討論 50 第4章、 雜散光評價模型 59 4.1 相機取像方法 59 4.2 影像特徵選取與萃取 63 4.3 影像分類模型及評價結果 65 第5章、 總結與未來研究方向 78 5.1 結論 78 5.2 未來研究方向 80 參考文獻 82 附錄一、相機鏡頭Theia ML-183-M 94 附錄二、相機感測元件IDS UI-3590CP-C-HQ 95 附錄三、相機與VR顯示模組光路對準使用之影像 98 附錄四、實驗數據 99

    1. "護眼調查國人每天盯3C螢幕10.7小時", 中廣新聞網, 2019. [Online]. Available: https://www.bcc.com.tw/newsView.3645111. [Accessed: 21- Dec- 2020].
    2. F. P. Brooks, "What's real about virtual reality?," IEEE Computer graphics and applications 19, 16-27 (1999).
    3. M. Meehan, B. Insko, M. Whitton, and F. P. Brooks Jr, "Physiological measures of presence in stressful virtual environments," Acm transactions on graphics (tog) 21, 645-652 (2002).
    4. D. A. Bowman and R. P. McMahan, "Virtual reality: how much immersion is enough?," Computer 40, 36-43 (2007).
    5. J. Rolland and O. Cakmakci, "Head-worn displays: the future through new eyes," Optics and Photonics News 20, 20-27 (2009).
    6. K. Swaminathan and S. Sato, "Interaction Design for Large Displays. interactions 4, 1 (Jan. 1997), 15–24," DOI: http://dx. doi. org/10.1145/242388.242395 10(1997).
    7. T. Simmons, "What's the optimum computer display size?," Ergonomics in Design 9, 19-25 (2001).
    8. A. Toet, S. E. Jansen, and N. J. Delleman, "Effects of field-of-view restrictions on speed and accuracy of manoeuvring," Perceptual and motor skills 105, 1245-1256 (2007).
    9. M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. G. Robertson, and G. K. Starkweather, "Toward characterizing the productivity benefits of very large displays," in Interact, 2003), 9-16.
    10. A. J. Sabri, R. G. Ball, A. Fabian, S. Bhatia, and C. North, "High-resolution gaming: Interfaces, notifications, and the user experience," Interacting with Computers 19, 151-166 (2007).
    11. B. M. Ens, R. Finnegan, and P. P. Irani, "The personal cockpit: a spatial interface for effective task switching on head-worn displays," in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014), 3171-3180.
    12. T. J. Buker, D. A. Vincenzi, and J. E. Deaton, "The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display: Reducing apparent latency with predictive compensation," Human factors 54, 235-249 (2012).
    13. J.-W. Lin, H. B.-L. Duh, D. E. Parker, H. Abi-Rached, and T. A. Furness, "Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment," in Proceedings ieee virtual reality 2002, (IEEE, 2002), 164-171.
    14. R. Patterson, M. D. Winterbottom, and B. J. Pierce, "Perceptual issues in the use of head-mounted visual displays," Human factors 48, 555-573 (2006).
    15. M. Pölönen, J. Hakala, R. Bilcu, T. Järvenpää, J. Häkkinen, and M. Salmimaa, "Color asymmetry in 3D imaging: Influence on the viewing experience," 3D Research 3, 5 (2012).
    16. J.-m. Cho, Y.-d. Kim, S. H. Jung, H. Shin, and T. Kim, "78‐4: Screen Door Effect Mitigation and Its Quantitative Evaluation in VR Display," in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), 1154-1156.
    17. O. Cakmakci, D. M. Hoffman, and N. Balram, "31‐4: Invited Paper: 3D Eyebox in Augmented and Virtual Reality Optics," in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2019), 438-441.
    18. T. Zhan, K. Yin, J. Xiong, Z. He, and S.-T. Wu, "Augmented reality and virtual reality displays: Perspectives and challenges," Iscience, 101397 (2020).
    19. R. H. Carpenter, Movements of the Eyes, 2nd Rev (Pion Limited, 1988).
    20. K. N. Ogle and J. T. Schwartz, "Depth of focus of the human eye," JOSA 49, 273-280 (1959).
    21. G. O. Ovenseri-Ogbomo and O. A. Oduntan, "Mechanism of accommodation: A review of theoretical propositions," African Vision and Eye Health 74, 6 (2015).
    22. T. Järvenpää and M. Pölönen, "Optical characterization and ergonomical factors of near‐to‐eye displays," Journal of the Society for Information Display 18, 285-292 (2010).
    23. K. Tung, M. Miller, J. Colombi, D. Uribe, and S. Smith, "Effect of vibration on eye, head and helmet movements while wearing a helmet-mounted display," Journal of the Society for Information Display 22, 535-544 (2014).
    24. M. R. Querry, "Direct Solution of the Generalized Fresnel Reflectance Equations*," JOSA 59, 876-877 (1969).
    25. Y. Geng, J. Gollier, B. Wheelwright, F. Peng, Y. Sulai, B. Lewis, N. Chan, W. S. T. Lam, A. Fix, and D. Lanman, "Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light," in Digital Optics for Immersive Displays, (International Society for Optics and Photonics, 2018), 1067606.
    26. B. Kress and T. Starner, "A review of head-mounted displays (HMD) technologies and applications for consumer electronics," in Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, (International Society for Optics and Photonics, 2013), 87200A.
    27. A. Kumar and N. Ahuja, "On the equivalence of moving entrance pupil and radial distortion for camera calibration," in Proceedings of the IEEE International Conference on Computer Vision, 2015), 2345-2353.
    28. A. Keirl and C. Christie, Clinical optics and refraction: A guide for optometrists, contact lens opticians and dispensing opticians (Elsevier Health Sciences, 2007).
    29. J. Park, B.-K. Seo, and J.-I. Park, "Binocular mobile augmented reality based on stereo camera tracking," Journal of Real-Time Image Processing 13, 571-580 (2017).
    30. "「睫毛」可保護靈魂之窗 最怕倒插刺眼傷視力", 好健康雜誌第44期, 2018. [Online]. Available: https://www.twhealth.org.tw/journalView.php?cat=1&sid=12&page=1. [Accessed: 6- Jan- 2021].
    31. C. W. Brooks, Understanding lens surfacing (Elsevier Health Sciences, 1991).
    32. "鏡片厚度「巧薄、超薄、超超薄」是什麼意思?如何選擇?", 海璃眼鏡, 2019. [Online]. Available: https://helis.tw/blogs/news/lens-thickness. [Accessed: 6- Jan- 2021].
    33. C. C. Gordon, C. L. Blackwell, B. Bradtmiller, J. L. Parham, P. Barrientos, S. P. Paquette, B. D. Corner, J. M. Carson, J. C. Venezia, and B. M. Rockwell, "2012 anthropometric survey of US army personnel: methods and summary statistics," (Army Natick Soldier Research Development and Engineering Center MA, 2014).
    34. H. Hong, "Novel method for the fast measurement of the three-dimensional range of the eyebox of a VR device," Journal of the Society for Information Display 28, 752-758 (2020).
    35. "失去光明的水晶:淺談白內障", 科學人雜誌, 2012. [Online]. Available: https://sa.ylib.com/MagArticle.aspx?id=2005. [Accessed: 22- Dec- 2020].
    36. 陳一平, 視覺心理學 (雙葉書廊, 2011).
    37. C. A. Curcio and K. A. Allen, "Topography of ganglion cells in human retina," Journal of comparative Neurology 300, 5-25 (1990).
    38. G. Osterberg, "Topography of the layer of rods and cones in the human retina. Copenhagen [Levin & Munksgaard]," (1935).
    39. R. Navarro, P. Artal, and D. R. Williams, "Modulation transfer of the human eye as a function of retinal eccentricity," JOSA A 10, 201-212 (1993).
    40. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, "Off-axis optical quality and retinal sampling in the human eye," Vision research 36, 1103-1114 (1996).
    41. S. Marcos, E. Moreno, and R. Navarro, "The depth-of-field of the human eye from objective and subjective measurements," Vision research 39, 2039-2049 (1999).
    42. R. Navarro, "The optical design of the human eye: a critical review," Journal of Optometry 2, 3-18 (2009).
    43. S. LaValle, Virtual reality (2016).
    44. H. Hofstetter, "A COMPARISON OF DUANE'S AND DONDERS'TABLES OF THE AMPLITUDE OF ACCOMMODATION," Optometry and Vision Science 21, 345-363 (1944).
    45. H. Hofstetter, "A useful age-amplitude formula," American Journal of Optometry and Archives of American Academy of Optometry 24(1947).
    46. M. B. Taub and J. Shallo-Hoffmann, "A Comparison of Three Clinical Tests of Accommodation Amplitude to Hofstetter's Norms to Guide Diagnosis and Treatment," Optometry & Vision Development 43(2012).
    47. A. B. Watson, "A formula for human retinal ganglion cell receptive field density as a function of visual field location," Journal of vision 14, 15-15 (2014).
    48. A. M. Larson and L. C. Loschky, "The contributions of central versus peripheral vision to scene gist recognition," Journal of Vision 9, 6-6 (2009).
    49. B. Wang and K. J. Ciuffreda, "Depth-of-focus of the human eye: theory and clinical implications," Survey of ophthalmology 51, 75-85 (2006).
    50. 陳揚捷, 基礎雙眼視覺學 (第二版) (新文京開發出版, 2017).
    51. "Range of field of view (FOV) for humans with both eyes", Wikimedia Commons, 2014. [Online]. Available: https://commons.wikimedia.org/wiki/File:Field_of_view.svg. [Accessed: 26- Dec- 2020].
    52. B. Adithya, B. P. Kumar, H. Lee, J. Y. Kim, J. C. Moon, and Y. H. Chai, "An experimental study on relationship between foveal range and FoV of a human eye using eye tracking devices," in 2018 International Conference on Electronics, Information, and Communication (ICEIC), (IEEE, 2018), 1-5.
    53. R. Kalawsky, The science of virtual reality and virtual environments (1993).
    54. H.-C. Li, P.-L. Sun, Y. Huang, and M. R. Luo, "Spectral Optimization of White LED Based on Mesopic Luminance and Color Gamut Volume for Dim Lighting Conditions," Applied Sciences 10, 3579 (2020).
    55. B. Kim, M. Choi, H. Kim, J. Lim, and S. Kang, "Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination," Optics express 17, 17916-17927 (2009).
    56. "Optical Properties of Current VR HMDs", Doc-Ok.org, 2016. [Online]. Available: http://doc-ok.org/?p=1414. [Accessed: 25- Dec- 2020].
    57. S. Matsuda and T. Nitoh, "Flare as applied to photographic lenses," Applied Optics 11, 1850-1856 (1972).
    58. E.-V. Talvala, A. Adams, M. Horowitz, and M. Levoy, "Veiling glare in high dynamic range imaging," ACM Transactions on Graphics (TOG) 26, 37-es (2007).
    59. A. Rizzi and J. J. McCann, "Glare‐limited appearances in HDR images," Journal of the Society for Information Display 17, 3-12 (2009).
    60. W. Dietmar, "Image Flare measurement according to ISO 18844," Electronic Imaging 2016, 1-7 (2016).
    61. N. Koren, "Measuring the impact of flare light on dynamic range," Electronic Imaging 2018, 169-161-169-166 (2018).
    62. D. M. Hasenauer and J. M. Kunick, "Full-field mapping and analysis of veiling glare sources for helmet-mounted display systems," in Current Developments in Optical Design and Optical Engineering VIII, (International Society for Optics and Photonics, 1999), 382-389.
    63. T. Hara, H. Saito, and T. Kanade, "Removal of glare caused by water droplets," in 2009 Conference for Visual Media Production, (IEEE, 2009), 144-151.
    64. R. Raskar, A. Agrawal, C. A. Wilson, and A. Veeraraghavan, "Glare aware photography: 4D ray sampling for reducing glare effects of camera lenses," in ACM SIGGRAPH 2008 papers (2008), pp. 1-10.
    65. X. Peng, Z. Gao, Y. Ding, D. Zhao, and X. Chi, "Study of ghost image suppression in polarized catadioptric virtual reality optical systems," Virtual Reality & Intelligent Hardware 2, 70-78 (2020).
    66. Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, "Stray light and tolerance analysis of an ultrathin waveguide display," Applied optics 54, 8354-8362 (2015).
    67. C. Yao, Y. Liu, D. Cheng, and Y. Wang, "Compact light field augmented reality display with eliminated stray light using discrete structures," in 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), (IEEE, 2019), 245-250.
    68. K. M. Stanney, R. R. Mourant, and R. S. Kennedy, "Human factors issues in virtual environments: A review of the literature," Presence 7, 327-351 (1998).
    69. C. J. Wilson and A. Soranzo, "The use of virtual reality in psychology: a case study in visual perception," Computational and mathematical methods in medicine 2015(2015).
    70. Y. S. Chen, Y.-P. Huang, and C. Y. Chen, "Human vision response in AR & VR," in 23rd International Display Workshops in conjunction with Asia Display, IDW/AD 2016, (Society for Information Display, 2016), 1633-1636.
    71. B. V. Ehinger, K. Häusser, J. P. Ossandon, and P. König, "Humans treat unreliable filled-in percepts as more real than veridical ones," Elife 6, e21761 (2017).
    72. R. A. Smith Jr, "Spatial-frequency adaptation and afterimages," Perception 6, 153-160 (1977).
    73. M.-J. Yin, Y. Yamamoto, and R. B. Gaynor, "The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β," Nature 396, 77-80 (1998).
    74. S. Shimojo, Y. Kamitani, and S. y. Nishida, "Afterimage of perceptually filled-in surface," Science 293, 1677-1680 (2001).
    75. G. C. De Wit and J. E. Coppens, "Stray light of spectacle lenses compared with stray light in the eye," Optometry and vision science 80, 395-400 (2003).
    76. T. N. Cornsweet, "The staircase-method in psychophysics," The American journal of psychology 75, 485-491 (1962).
    77. B. Treutwein, "Adaptive psychophysical procedures," Vision research 35, 2503-2522 (1995).
    78. M. A. Garcıa-Pérez, "Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties," Vision research 38, 1861-1881 (1998).
    79. C. I. Longley, "Contrast sensitivity and glare: new measurement techniques and the visual consequences of wearing head-mounted displays," (University of Bradford, 2016).
    80. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. Scrivener, and C. J. Tait, "Quantifying colour appearance. Part I. LUTCHI colour appearance data," Color Research & Application 16, 166-180 (1991).
    81. P. L. Sun, H. C. Li, and M. Ronnier Luo, "Background luminance and subtense affects color appearance," Color Research & Application 42, 440-449 (2017).
    82. M. Kim, J.-H. Jo, Y. Park, and S.-W. Lee, "Amendment of CIECAM02 with a technical extension to compensate Helmholtz-Kohlrausch effect for chromatic characterization of display devices," Displays 56, 1-10 (2019).

    QR CODE