簡易檢索 / 詳目顯示

研究生: 彭鉦閎
Cheng-hung Peng
論文名稱: 飛秒雷射製作玻璃內部光柵
Manufacture of glass material internal grating by femtosecond laser process
指導教授: 鄭正元
Jeng-Ywan JENG
口試委員: 鄭逸琳
Yih-Lin Cheng
黃忠偉
Whang, Jong-Woei
洪基彬
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 玻璃內部光柵飛秒雷射
外文關鍵詞: grating, glass, femtosecond laser
相關次數: 點閱:148下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要利用飛秒雷射加工技術的超短脈衝與能量密度極高等特性,這些加工特性於材料上會產生熱影響區極小、無重鑄層、加工尺寸小、加工精密度高等優勢適用於玻璃材料內部,欲解決一般長脈衝雷射於加工過程中會產生熱效應,而導致加工尺寸精度不佳或是材料強度降低與殘留應變力等問題。本研究乃是分析飛秒雷射加工於玻璃材料內部產生的交互作用,且測試使用不同雷射參數(即雷射能量功率、掃描速度、聚焦深度等)對材料加工後,產生加工尺寸的變化與加工情況,觀察微結構的變化與現象而尋找出良好的內部加工參數,並且於玻璃材料內部製作光柵結構;同時,使用DiffractMOD模擬軟體對玻璃內部光柵結構進行干涉與繞射之分析,對模擬出的繞射效率與實際玻璃內部單層光柵之繞射效率進行比對分析,除了第一階數所產生的繞射效率較低以外,從第二階數起,所觀察到的內部光柵之繞射效率都與模擬出的繞射效率趨勢相近。
本研究於玻璃材料內部也設計多層光柵之微結構,並且在玻璃內部製作出雙層光柵進行繞射效率量測與分析,後續更設計出非規律性多層光柵之微結構,以證明飛秒雷射對於玻璃材料內部製作規律性或非規律性多層光柵之微結構的可行性,而期望未來可廣泛應用於半導體產業、光電產業以及數位訊號產業等不同領域的微奈米製造技術。


In this study, we use of femtosecond ultrashort pulse laser(FUPL) processing technology and high energy density and other characteristics.
An integrated approach based on the experimental results is applied to determine the optimal processing parameters for the femtosecond ultrashort pulse laser (FUPL) of glass material. The proposed method consists of two stages. In the first stage, an investigation is performed into the effects of interaction on the difference parameters (i.e., laser energy power, scanning speed, and depth of focus, etc.) of glass material by producing grating structure. In preparing the specimens, the grating structure is fabricated using femtosecond ultrashort pulse laser (FUPL). In the second stage, the experimental results acquired are used to construct an internal grating model of the interference and the diffraction by simulation (Diffract MOD software).
Compared, both two model results and analysis (i.e., experimental and simulation), which were used to analyze the diffraction and interference inside layer of the glass. The diffraction results obtained from the numerical simulation were analyzed and compared with the experimental results. The numerical simulation result show that the diffraction intensity was higher compared to the experimental one for single layer. Conversely, the numerical simulation indicates a same level of diffraction intensity with the diffraction intensity obtained in the experiment for the second layer. It can be state that femtosecond laser technology can be used to process the materials with more customized procedure besides the original procedure.

中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 致謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………XI 第一章 緒論…………………………………………………………1 1.1 前言………………………………………………………….1 1.2 研究動機與目的…………………………………………….2 1.3 研究方法…………………………………………………….3 1.4 論文架構…………………………………………………….6 第二章 飛秒雷射文獻回顧……………………………………….7 2.1 飛秒雷射之歷史及演進…………………………………….7 2.2 飛秒雷射文獻回顧………………………………………….9 2.3 長脈衝雷射與超短脈衝雷射之分析………………………12 2.3.1 長脈衝雷射之加工特性分析………….………………...13 2.3.2 超短脈衝雷射之加工特性分析…………………………14 2.4 飛秒雷射之產生原理……………………………………… 15 2.4.1 鎖模雷射振盪器………………………………………....16 2.4.2 啾頻脈衝雷射放大器……………………………………19 2.5 飛秒雷射加工機制………………………………………….21 2.5.1 飛秒雷射加工於材料上產生的能量轉換……………… 21 2.5.2 材料的剝離機制………………………………………… 24 2.5.3 飛秒雷射加工材料的剝離閥值………………………… 25 2.5.4 飛秒雷射加工透明材料的移除機制…………………… 26 2.6 光柵種類及光干涉、繞射原理介紹……………………….28 2.6.1 光的干涉原理…………………………………………… 30 2.6.2 光的繞射原理及其現象………………………………….33 第三章 實驗規劃及儀器介紹…………………………………… 34 3.1 實驗設計與參數規劃………………………………………. 34 3.1.1 雷射機台參數…………………………………………….36 3.1.2 材料參數………………………………………………….41 3.2 飛秒雷射實驗機台…………………………………………. 41 3.3 檢測儀器設備介紹…………………………………………. 45 3.3.1 光學顯微鏡……………………………………………….45 3.3.2 雷射模組………………………………………………….47 3.3.3 光功率檢測器…………………………………………….48 第四章 飛秒雷射應用於玻璃光柵之加工研究……………… 49 4.1 玻璃材料之實驗參數測試…………………………………. 49 4.1.1 不同數值孔徑(NA)鏡頭之效應………………………….49 4.1.2 加工速率與切線寬度之關係…………………………….51 4.1.3 加工功率與切線寬度之關係…………………………….57 4.1.4 加工深度與切線寬度之關係…………………………….60 4.2 DiffractMOD模擬玻璃內部光柵之繞射效率…………….. 66 4.2.1 50X物鏡(NA=0.42)模擬內部光柵之繞射效率………... 67 4.2.2 100X物鏡(NA=0.7)模擬內部光柵之繞射效率…………69 4.2.3 100X物鏡(NA=0.7)模擬內部雙層光柵之繞射效率……70 4.2.4 DiffractMOD模擬玻璃內部光柵之繞射效率總結…….. 71 4.3 玻璃內部光柵製作…………………………………………..72 4.3.1 玻璃內部光柵實驗……………………………………….73 4.3.2 玻璃內部光柵結果及分析……………………………….79 4.3.3 玻璃內部光柵之繞射效率總結………………………….83 第五章 結論與未來展望…………………………………………..87 5.1 結論…………………………………………………………..87 5.2 未來展望……………………………………………………..90 參考文獻………………………………………………………………94

[1] 楊國輝、黃宏彥,雷射原理與量測概論,五南圖書出版股份有限公司,初版,2001。
[2] J. Hecht, The Laser Guidebook, 2nd Edition, McGraw-Hill,Inc., California, Chapter2 (1992)
[3] Alexander M. Streltsov and Nicholas F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses”, OPTICS LETTERS, Vol. 26, No. 1, (2001)
[4] M. Hughes, W. Yang and D. Hewak, ”Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass”, APPLIED PHYSICS LETTERS, Vol. 90, No.131113 , (2007)
[5] Sung-Hak Cho , Won-Seok Chang , Jae-Goo Kim , Kwang-Ryul Kim , Jong Wook Hong , “Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser” Applied Surface Science, Vol. 255,pp. 2069–2074 (2008)
[6] Sung-Hak Cho , Won-Seok Chang , Kwang-Ryul Kim , Jong Wook Hong , “Femtosecond laser embedded grating micromachining of flexible PDMS plates” Optics Communications, Vol. 282,pp. 1317–1321 (2009)
[7] K.C. Vishnubhatla , S. Venugopal Rao , R. Sai Santosh Kumar , Maurizio Ferrari , D. Narayana Rao , “Optical studies of two dimensional gratings in fused silica, GE 124,and FoturanTM glasses fabricated using femtosecond laser pulses” Optics Communications, Vol. 282,pp. 4537–4542 (2009)
[8] 杜柏賢,「飛秒雷射之無熱加工創新研究心臟血管支架、玻璃內部光柵與裂片」,國立台灣大學機械工程學系研究所碩士班,(2009)。
[9] Tien-Li Chang , Shao-Wei Luo , Han-Ping Yang , Chi-Hung Lee , “Fabrication of diffraction grating in polydimethylsiloxane using femtosecond-pulsed laser micromachining” Microelectronic Engineering, Vol. 87,pp. 1344–1347 (2010)
[10] 邱婉玲,「飛秒雷射加工創新研究內部結構型擴散片與矽晶圓裂片應用」,國立台灣大學機械工程學系研究所碩士班,(2010)。
[11] Jung-Kyu Park , Sung-HakCho , “Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation” Optics and Lasers in Engineering, Vol. 49,pp. 589–593 (2011)
[12] Tomohiro Hashimoto , Shuhei Tanaka , “Large negative refractive index modification induced by irradiation of femtosecond laser inside optical glasses” Applied Surface Science, Vol. 257,pp. 5429–5433 (2011)
[13] Jung-Kyu PARK, Sung-Hak CHO, Kwang-Ho KIM, Myung-Chang KANG, “Optical diffraction gratings embedded in BK-7 glass by low-density plasma formation using femtosecond laser” Trans. Nonferrous Met. Soc. China, Vol. 21,pp. 165-169 (2011)
[14] Kononenko, Konov, Garnov and Danielius, “Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses”, Quantum Electronics, Vol. 29 (8) ,pp.724- 728 (1999)
[15] Jorg Kroger and Wolfgang Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers”, Adv Polym Sci , Vol.168, pp.247–289 ,(2004)
[16] Rev. F, “User’s Manual of Spitfire”, Spectra-Physics Company, (2002)
[17] 朱旭新,陳聿昕,汪治平,李超煌,陳賜原“十兆瓦超短脈衝雷射系統”科儀新知128 期5-18 頁 (第二十三卷第六期,民國九十一年六月)
[18] A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics”, IEEE J. Quantum Electron, Vol. 16, pp.89–93 (1980)
[19] C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses”, Meas. Sci. Technol., Vol. 12, pp.1784–1794, (2001)
[20] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers”, Optical Society of America, Vol. 13, No. 2, (1996)
[21] E. S. Bliss, “Pulse duration dependence of laser damage mechanisms”, Opto-Electronics , Vol. 3, pp. 99–108 (1971)
[22] 張國順、鄭壽昌,現代雷射製造技術,新文京開發出版股份有限公司,初版,2008。
[23] Yasuhiko Shimotsuma and Kazuyuki Hirao, “Nanofabrication in transparent materials with a femtosecond pulse laser”, Journal of Non-Crystalline Solids, Vol. 352, pp. 646–656, (2006)
[24] 蔡心邕,「威廉斯區塊之光柵特性研究」,國立中山大學物理學研究所碩士班,(2008)。
[25] John M. Cowley、徐統(譯),繞射物理學,國立編譯館,初版,2001。
[26] 葉玉堂、饒建珍、肖峻,幾何光學,五南圖書出版股份有限公司,初版,2008。
[27] 許招墉,物理光學,俊傑書局股份有限公司,初版,2002。
[28] 陳建人,光機電系統整合概論,財團法人國家實驗研究院儀器 科技研究中心,初版,2005。
[29] 丁勝懋,雷射工程導論,中央圖書出版社,第四版,1995。
[30] K. Venkatakrishnan, B. Tan and A. Ngoi, Opt. Eng., Vol.40, No. 12, (2001)
[31] http://www.mitutoyo.co.jp/eng/index.html Mitutoyo,Japan.
[32] 工業技術研究院南分院-雷射應用科技中心
[33] http://www.newport.com/ Newport Corporation
[34] http://www.nikon.com/ Nikon Corporation
[35] Sung-Hak Cho , Won-SeokChang , Kwang-RyulKim , JongWookHong , “Dynamics of plasma formation and permanent structural transformation in ZBLAN excited by tightly focused femtosecond laser pulses” Optics and Lasers in Engineering, Vol. 47,pp. 127–132 (2009)
[36] Xianhua Wang, Feng Chen , Hewei Liu, Weiwei Liang, Qing Yang, Jinhai Si, Xun Hou , “Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations” Applied Surface Science, Vol. 255,pp. 8483–8487 (2009)
[37] C. Florea , J.S. Sanghera , I.D. Aggarwal , “Direct-write gratings in chalcogenide bulk glassesand fibers using a femtosecond laser” Optical Materials, Vol. 30,pp. 1603–1606 (2008)
[38] Hideo Hosono , Ken-ichi Kawamura , Satoru Matsuishi , Masahiro Hirano , “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near infrared femtosecond pulses” Nuclear Instruments and Methods in Physics Research B, Vol. 191, pp. 89–97 (2002)
[39] C.W. Hee , B.K.A. Ngoi, L.E.N. Lim, K. Venkatakrishnan, W.L. Liang , “Effect of polarization on femtosecond pulsed laser ablation of surface relief gratings using a novel interferometer” Optics & Laser Technology, Vol. 37,pp. 93 – 98 (2005)
[40] Sung-Hak Cho , Hiroshi Kumagai , Katsumi Midorikawa , “Fabrication of internal diffraction gratings in planar silica plates using low-density plasma formation induced by a femtosecond laser” Nuclear Instruments and Methods in Physics Research B, Vol. 197 , pp. 73–82 (2002)
[41] A. Baum , S. De Nicola , S. Abdalah , K. Al-Naimee , A. Geltrude , M. Locatelli , R. Meucci , W. Perrie , P.J. Scully , A. Taranu , F.T. Arecchi , “Optical characterization of PMMA phase gratings written by a 387 nm femtosecond laser” Optics Communications, Vol. 284, pp. 2771–2774 (2011)
[42] Quan-Zhong Zhao , Jian-Rong Qiu , Chong-Jun Zhao , Xiong-Wei Jiang , Cong-Shan Zhu , Guang-Jun Zhao , “Investigation of optical properties of Ce3+-doped Gd2SiO5 crystal irradiated by a femtosecond laser” Optics Communications, Vol. 255, pp. 97–101 (2005)
[43] Md. Shamim Ahsana , Farid Ahmed , Yeong Gyu Kim , Man Seop Lee , Martin B.G. Jun , “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures” Applied Surface Science, Vol. 257, pp. 7771–7777 (2011)
[44] Hiroyuki Mochizuki , Wataru Watanabe , Yasuyuki Ozeki , Kazuyoshi Itoh , Katsumi Matsuda , Satoshi Hirono , “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation” Thin Solid Films, Vol. 518 , pp. 714–718 (2009)
[45] Md. Shamim Ahsan , Yeong Gyu Kim , Man Seop Lee , “Formation mechanism of nanostructures in soda–lime glass using femtosecond laser” Journal of Non-Crystalline Solids, Vol. 357, pp. 851–857 (2011)
[46] Sung-Hak Cho , Hiroshi Kumagai, Katsumi Midorikawa , “In situ observation of dynamics of plasma formation and refractive index modification in silica glasses excited by a femtosecond laser” Optics Communications, Vol. 207, pp. 243–253 (2002)
[47] H.Y. Zheng , W. Zhou , H.X. Qian , T.T. Tan , G.C. Lim , “Polarisation-independence of femtosecond laser machining of fused silica” Applied Surface Science, Vol. 236, pp. 114–119 (2004)
[48] Y. Dong , Y.M. Sun , Y.F. Li , X.Q. Yu , X.Y. Hou , X. Zhang , “The fabrication of index-modulated grating coupler in a polymeric waveguide using two-photon initiated photopolymerization” Thin Solid Films, Vol. 516, pp. 1214–1217 (2008)
[49] 黃欣怡,「雷射精密加工於常用工程材料之研究」,國立台灣大學機械工程學系研究所碩士班,(2006)。
[50] 蔡昆霖,「應用飛秒雷射對高分子及不鏽鋼金屬材料做細微加工之研究」, 國立台灣科技大學機械工程學系研究所碩士班, (2005)。
[51] Kafka,Watts and Pieterse, “Picosecond and Femtosecond Pulse Generation in a Regeneratively Mode-Locked Ti:Sapphire Laser”, IEEE J. Quantum Electronics, Vol. 28, pp. 2151-2162, (1992)
[52]http://www.onset-eo.com/big5/n_products/optics_&_materials/product_catalog_optical_&_materials_products3-54.htm , 銓州光電股份有限公司。
[53] N. Glezer, and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials”, Applied Physics Letters, Vol. 71, pp.882-884, (1997)
[54] C. Florea, and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses”, Journal of Lightwave Technology, Vol. 21, pp. 246-253 (2003)
[55] Y. Shen, The Principles of Nonlinear Optics, John Wiley & Sons, Inc., New York, (1984)
[56] Chris B Schaffer, Andr´e Brodeur and Eric Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecondlaser pulses”, Meas. Sci. Technol., Vol. 12, pp. 1784–1794, (2001).
[57] I. Sohn ,M. Lee ,S. Jee , “Fabrication of photonic devices directly written in glass using femtosecond laser pulses” SPIE, Vol.5662,pp.190-192(2004)
[58] Martin Ams, Graham D. Marshall, Peter Dekker, Mykhaylo Dubov, Vladimir K. Mezentsev, “Investigation of Ultrafast Laser–Photonic Material Interactions: Challenges for Directly Written Glass Photonics” IEEE J. OF Quantum Elect. , Vol. 14, NO. 5, pp.1370-1381(2008)
[59] Chris B. Schaffer, André Brodeur, José F. García, and Eric Mazur , “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy” Opt. Lett. , Vol. 26, No. 2 (2001)

QR CODE