簡易檢索 / 詳目顯示

研究生: 陳柏偉
Bo-Wei Chen
論文名稱: 液體多參數感測之元組件開發與系統量測
Devices Investigation for Simultaneously Measurement in Multi-parameter Liquid Sensing System
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 單秋成
Chow-Shing Shin
游易霖
Yi-Lin Yu
陳俊仲
Chun-Chung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 112
中文關鍵詞: 光纖感測光纖光柵機械式光開關液體參數感測步進馬達
外文關鍵詞: fiber optic sensing, fiber Bragg grating, mechanical optical switch, liquid parameter sensing, stepper motor
相關次數: 點閱:215下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究光纖液體多參數感測實驗,液體參數分別是溫度、折射率及液位;並且搭配自行開發之機械式光開關與Labview軟體應用進行量測資料擷取,可針對不同光路進行切換。多參數感測使用布拉格光纖光柵及長週期光纖光柵作為感測頭,液體折射率以鹽水為樣本,長週期光纖光柵對於水溫及折射率皆有影響性;而布拉格光纖光柵則針對液位感測所設計。其中折射率感測範圍為1.336-1.376,波長總飄移量約為2.4nm,長週期光纖光柵對於外在液體折射率平均變化約為-47.46 nm/index(n),線性度R2約為0.9896;溫度感測範圍25-50 ̊C、液體高度40cm-140cm;由雙參數之液體溫度與液體高度同步感測。實驗分析得知長週期光柵對溫度比布拉格光柵靈敏,波長總飄移量約為7.5nm,長週期光纖光柵對於外在溫度平均變化約為-0.2544 nm/℃,線性度R^2約為0.9865,而液體位置經實驗發現其溫度高低亦影響液體高度之波長飄移量,例如由低溫25 ̊C的-1.2 pm/cm下降至高溫50 ̊C條件下的-4 pm/cm,線性度R^2約為0.9967。
    自主開發之1x4機械式光開關,插入損失改善到1 dB以下,除降低插入損耗外,亦達成藉由Labview程式擷取感測資料並能夠儲存光功率計量測之資料作為感測紀錄,透過機械式光開關的便利性,不僅能夠感測橋梁結構之變化,亦可根據用途作橋下或大樓水塔之水質水位之同時感測。


    The aim of this thesis is to develop fiber optic sensing for liquid multi-parameter measurement. The parameters we measured including temperature, refractive index and liquid level. A home-made mechanical optical switch and a self-written Labview are used to measure the liquid parameters in different fiber routings. The home-made mechanical optical switch is convenience for switching among different optical paths.
    In this thesis, two kinds of fiber gratings were fabricated and used to measure liquid multi-parameters. The home-made fiber Bragg grating (FBG) combined long period fiber grating (LPFG) were used to measure liquid refractive index, level and temperature in saline solution. It is found that LPFG is sensitive to refractive index and temperature while FBG is sensitive to liquid level. Firstly, the refractive index we measured ranging from 1.336 to 1.376 corresponding to wavelength drift of 2.4 nm. The average refractive index co-efficiency and linearity ?2 are -47.46 nm/n and 0.9896, respectively. The liquid temperature we measured ranging from 25℃ to 50℃ corresponding to wavelength shift amount of 7.5nm. The average temperature co-efficiency and linearity ?2 are -0.2544 nm/℃ and 0.9865, respectively.
    Secondly, a FBG-based linear cavity fiber laser is also proposed and applied to the liquid level sensing. Liquid level sensing using saline liquid with sensing depth from 40 to 140 cm. FBGs are attached upon a carbon fiber reinforced plastics (CFRPs) to sense the water level. It was found that the liquid temperature may induce wavelength shift. By experiment, we found that as temperature increases from 25℃ to 50℃, the wavelength shift slope increases from -1.2 pm/cm to -4 pm/cm. The average sensitivity and linearity ?2 of water level sensor are 0.04572 nm/cm and 0.9967, respectively. And the total wavelength variation is about 8 nm for liquid level sensing measurement.
    The 1x4 home-made mechanical optical switch has low insertion loss of less than 1 dB. The Labview software is also designed to retrieve sensing data and store the information. The proposed sensing scheme may find potential applications for simultaneously measurement of water parameters under bridge or building tower.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VII 第一章緒論 1 1-1前言 1 1-2研究動機 2 1-3文獻探討 3 1-4論文架構 6 第二章光纖感測原理 8 2-1 光纖光柵簡介與原理 8 2-1-1布拉格光纖光柵原理 9 2-1-2 長週期光纖光柵原理 11 2-2 感測用光纖光柵製作 13 2-2-1 布拉格光纖光柵製作 14 2-2-2 長週期光纖光柵製作 16 2-3布拉格光纖光柵使用之碳纖維複材簡介 17 2-4 感測用寬頻光源介紹 18 第三章複合式雙參數光纖光柵監測系統 21 3-1 感測理論分析 21 3-1-1 長週期光纖光柵感測折射率理論分析 211 3-1-2 長週期光纖光柵感測溫度理論分析 23 3-1-3 布拉格光纖光柵感測水位理論分析 24 3-1-4 雙參數光纖光柵感測理論分析 26 3-2摻鉺光纖雷射理論分析與感測頭設計 29 3-2-1 摻鉺光纖雷射理論分析 29 3-2-2 雙參數光纖光柵感測頭設計 30 3-3 實驗結果與討論 32 3-3-1 雙參數之鹽水折射率與水位感測 32 3-3-2 雙參數之水溫與水位感測 442 3-4 本章小節 50 第四章三參數光纖光柵感測系統實驗 52 4-1 三參數感測系統簡介 52 4-2 實驗結果與討論 52 4-2-1 三參數之水位參數分析 52 4-2-2 三參數之水溫參數分析 63 4-2-3 三參數之鹽水折射率參數分析 67 4-3 本章小節 73 第五章機械式光開關研製與量測 74 5-1光開關簡介 74 5-2步進馬達之簡介與原理 74 5-2-1 步進馬達簡介 74 5-2-2 步進馬達種類與原理 75 5-2-3 步進馬達的驅動 77 5-2-4 馬達控制器介紹 78 5-2-5 以軟體驅動控制步進馬達 79 5-2-6 以軟體撰寫自動擷取量測數值結果 81 5-3機械式光開關之設計與量測 81 5-3-1 實驗架構 81 5-3-2 實驗結果 84 5-4 本章小節 88 第六章結論與未來展望 89 6-1 結論 89 6-2 未來展望 91 參考文獻 92

    參考文獻
    [1] 安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004/03。
    [2] A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [3] Wikipedia, “Fiber Optic Sensor”, April 2014
    http://en.wikipedia.org/wiki/Fiber_optic_sensor
    [4] 許仕 (Shih Hsu),“串列及並列式光纖光柵於應力及溫度方面之研究”, 99 年度教師專題研究計畫成果報告,2010/1/1。
    [5] 邱永芳、黃安斌、饒正、李瑞庭、陳志芳、何彦德,“全光纖式邊坡穩定監測系統整合與現地應用測試”,交通部運輸研究所,2011/4。
    [6] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEEPhotonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [7] 高雪松,”光纖光柵在光通信領域中的應用”,2005。
    [8] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [9] 畢衛紅,張闖,“光纖Bragg光柵的反射特性研究”,中國科技論文在線,第22期,第8卷,2003。
    [10] K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [11] Amit Singh, Derick Engles,Anish Sharma and Maninder Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik 125 , 457, 2014.
    [12] 李雅萍,“Fabry-Perot etalon 所組成之光強增益平坦器之研究”,中央大學光電科學研究所碩士論文,2001。
    [13] Erdogan, T., “Fiber grating spectra,” IEEE/OSA Journal of Lightwave Technology ,” 15, no. 8, pp. 1277-1294, 1997.
    [14] K.O. Hill, Y.Fujii, D.C Johnsen, and B.S Kawasaki, ” Photosensitivity in optical fiber_waveguides: Application_to_reflection_filter_fabrication,” Appl.Phys.Lett. Vol.32, p647-649, 1978.
    [15] Chee-Kiong Soh, Chee-Kiong, Yang, Yaowen, and SureshBhalla, “Smart Materials in Structural Health monitoring control and biomechanics,” Springer (Germany) and Zhejiang University Press (China), 2012, 414-420.
    [16] G. Meltz, W.W. Morey, and W.H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp.823-825, 1989.
    [17] 陳宣臣, “波長可調光纖光柵之研製與應用” ,台灣科技大學電子工程研究所碩士論文,2004。
    [18] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., vol.62, no.10, pp. 1035-1037, 1993.
    [19] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002。
    [20] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005。
    [21] 洪士軒,“用於液體多參數分析之新穎光纖感測架構設計”,台灣科技大學電子工程研究所碩士論文,2014。
    [22] 蕭文皓,“交通安全感測網路之光開關設計及參數量測”,台灣科技大學電子工程研究所碩士論文,2015。
    [23] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, pp. 991-1007, 1997.
    [24] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, April, 2012.
    [25] 廖協虹, “C+L-Band 摻鉺光纖放大器的研製與應用”,國立台灣科技大學電子工程研究所碩士論文,2004
    [26] 廖顯奎,“當代光電工程”,初版,台中,滄海書局, 204–207頁,2006
    [27] Daniel Alfredo Chamorro Enrı´quez , Alberto R. da Cruz, and Maria Thereza M. Rocco Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination, ” Optics & Laser Technology, pp.981–986, 2012
    [28] Strobel Nick, “Nick Strobel's Astronomy Notes,” May, 2001.
    [29] R. Kashyap, “Fiber Bragg gratings,” San Diego, USA: Academic Press, 1999.
    [30] 李杰,“長週期光纖光柵折射率傳感的研究概況”,廈門科技,59-62頁,2006。
    [31] Q. Mao and J. W. Y. Lit, “Multi-wavelength erbium-doped fiber laser with active overlapping linear cavities,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 160-169, 2003.
    [32] S. K. Liaw, H. C. Chen, and Y. C. Lai, “C-Band continuously tunable lasers based on fiber Bragg gratings,” Opto-Electronic and Communication Conference 2004, Yokohama, Japan, 2004.
    [33] S. W. Harun, M. Z. Zulkifli, and H. Ahmad, “A linear cavity S-band Brillouin/Erbium fiber laser,” Laser Physics Lett., vol. 3, pp. 369-371, 2006.
    [34] S. K. Liaw, W. Y. Jang, C. J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, pp. 2280-2282, 2007.
    [35] D. B. Mortimore, “Fiber loop reflectors,” IEEE/OSA Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, 1988
    [36] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [37] 天聖金屬科技http://www.zenda.com.tw/faq/
    [38] 陳鴻仁,“光開關元件扮演網路要角”,光連雙月刊第13期,53-58頁,2003。
    [39] 范光照、林武郎、姜禮宏、郭文正,“微/奈米創新型1x4機械式光開關”,中國機械工程學會第二十二屆全國學術研討會論文集,2005/11。
    [40] 王崇飛,“步進馬達簡介”,元智大學電機系,2000。
    [41] 辰白,“步進馬達技術活用手冊”,建興出版社,台北,2001。
    [42] 李揚漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良、趙亮琳,“光纖通訊網路”,五南圖書出版股份有限公司,台北,2007。
    [43] 賴郁竹,“多參數光纖光柵液體感測研製”,台灣科技大學電子工程研究所碩士論文,2015。

    QR CODE