簡易檢索 / 詳目顯示

研究生: 劉曄
Yeh Liu
論文名稱: 雙向和三向高速光傳輸系統之設計、量測與分析
Design, Measurements and Analyses of Bi-directional and Tri-directional High-speed Optical Transmission
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
周錫熙
Hsi-Hsir Chou
鄒志偉
Chi-Wai Chow
陳彥宏
Yen-Hung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 整份PDF:105頁
中文關鍵詞: 光纖通訊分波多工摻鉺光纖放大器布拉格光纖光柵
外文關鍵詞: Optical fiber communication, Wavelength division multiplexing, Erbium-doped Fiber Amplifier, Fiber Bragg grating
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在測試雙向和三向光纖傳輸系統的穩定度分析,依不同光源將架構設計為單波長、分波多工和不同波長的傳輸模式,且以不同波長的模式結合10 Gbit/s和2.5 Gbit/s電訊號傳輸,主要測試波長訊號的同頻和臨頻干擾的影響,本實驗設計的架構幾乎為對稱的形式,在功率量測和光頻譜分析儀的測試下得到差不多的功率與頻譜結果,因此接收端訊號僅選定以1552.5 nm為主要訊號的檢視波長,以維持測試儀器在一樣的條件下來比較,且以0公里、25公里和50公里單模光纖測試,得到使用帶通濾波器而未接有色散補償可提升2-3 dB的功率償付。以雙向傳輸來切入主題,各波長的通道間距為0.8 nm作為實驗的標準,在實驗得到僅有1.5 dB的損耗,而頻帶內的串擾約在-37 dB左右,在單波長傳輸模式不同距離下的功率償付為0.482 dB、0.887 dB和1.592 dB;分波多工傳輸模式不同距離下功率償付分別為0.631 dB、1.002 dB和1.773 dB;不同波長傳輸模式不同距離的功率償付為0.214 dB、0.392 dB和0.926 dB;最後在不同速度混成且不同距離下功率償付為0.114 dB、0.368 dB和0.514 dB。而在三向傳輸可分為有無光開關連接,光開關的切換又分為交叉和平行切換方式,而實驗的損耗在2-4 dB間,有接光開關功率償付有微幅上升0.1-0.2 dB,以最差的情形比較,其2×2光開關交叉且未接光纖的四種架構功率償付依序為0.621 dB、0.756 dB、0.317 dB和0.329 dB。最後以布拉格光纖光柵式光交叉鏈路2×2和3×3同波長和分波多工測試;其路徑2×2 OXC最大損耗為2.5 dB;3×3 OXC最大損耗為7.5 dB,2×2 OXC光柵反射未接光纖時,同波長和分波多工功率償付分別為0.709 dB和0.855 dB,而3×3 OXC功率償付則為0.658 dB和1.009 dB,其得知在帶內串擾為-10 dB時會造成功率償付為0.832 dB。


    The subject of the thesis is mainly to test the stability of bi-directional and tri-directional fiber transmission system, design the transmission methods, which are single wavelength, wavelength division multiplexing (WDM), different wavelengths, and the integration of electrical signal 10 Gbit/s and 2.5 Gbit/s based on the transmission method in different wavelengths according to the change of light sources, and change the corresponding architectures. The goals are to test the influence of the signal with the same and adjacent channel interference. The architecture design in the experiment is almost in the paralleled type, with the power measurement and Optical Spectrum Analyzer (OSA) getting the similar power and the spectrum, respectively. So, we select 1552.5 nm as the wavelength of the signal in the receiver to keep the instruments working under the same condition to make a comparison. In addition, we test it with the increment of additional 25 km and 50 km single-mode fiber (SMF) and get the result that using band-pass filter (BPF) without dispersion compensation could enhance 2-3 dB power penalty. From bi-directional transmission to cut to the point, the standard in the experiment requires the gap between each channel with 0.8 nm. The result shows that the loss is only 1.5 dB and the intra-channel’s crosstalk is about -37 dB. In single wavelength transmission methods with different distances, the power penalties are 0.482 dB, 0.887 dB, 1.592 dB, respectively. In WDM transmission methods with different distances, the power penalties are 0.631 dB, 1.002 dB, 1.773 dB, respectively. As for the transmission methods with different distances, the power penalties are 0.214 dB, 0.392 dB, 0.926 dB, respectively; With the hybrid speed under different distances, the power penalties are 0.114 dB, 0.368 dB, 0.514 dB. In tri-directional transmission, there are with/without optical switches, which could be separated into bar switch and cross switch. The experiment result shows that the loss is around 2-4 dB and the power penalty slightly increases 0.1-0.2 dB with optical switch. To use the worst condition to make a comparison, the power penalties of the cross switch without fiber in different architectures are 0.621 dB, 0.756 dB, 0.317 dB, 0.329 dB. Finally, we use 2x2 and 3x3 optical cross connect (OXC) based on FBG with the same wavelength and WDM to test. The maximum loss for 2x2 OXC is 2.5 dB and 7.5 dB for 3x3 OXC. When 2x2 OXC is without the fiber, the power penalties for the same wavelength and WDM are 0.709 dB and 0.855 dB, and 0.658 dB and 1.009 dB for 3x3 OXC and we could realize that it will lead to power penalty with 0.832 dB when intra-band crosstalk is -10 dB.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1. 1 前言 1 1. 2 研究動機 2 1. 3 論文架構 3 第二章 光通訊原理介紹 4 2. 1 光通訊原理 4 2. 2 系統發射端 5 2. 3 傳輸通道 7 2. 4 系統中繼端 11 2. 5 系統接收端 12 2. 6 其他重要元件與儀器 14 2. 6. 1 陣列波導光柵 14 2. 6. 2 光調變器 16 2. 6. 3 光濾波器 17 2. 6. 4 電放大器 18 2. 6. 5 時脈資料回復器 20 2. 7 文獻回顧 21 第三章 雙向光通訊傳輸系統 23 3. 1 系統相關參數 23 3. 1. 1 調變介紹 23 3. 1. 2 編碼與序列 24 3. 1. 3 誤碼率 25 3. 2 雙向單波長傳輸實驗 27 3. 2. 1 雙向單波長功率量測 27 3. 2. 2 雙向單波長誤碼率量測 31 3. 3 雙向分波多工傳輸實驗 34 3. 3. 1 雙向分波多工功率量測 34 3. 3. 2 雙向分波多工誤碼率量測 36 3.4 雙向不同波長傳輸實驗 37 3.5 本章小結 41 第四章 三方向光通訊傳輸系統 42 4. 1 三向傳輸系統概述 42 4. 2 瑞利散射之分析 44 4. 2. 1 實驗分析 44 4. 2. 2 理論分析 47 4. 3 三方向光通訊傳輸實驗 49 4. 3. 1 三向傳輸系統之分析 49 4. 3. 2 三向單波長功率量測 50 4. 3. 3 三向分波多工功率量測 51 4. 3. 4 三向不同波長功率量測 53 4. 3. 5 各系統誤碼率量測 55 4. 4 三方向(重構式)光通訊傳輸實驗 58 4. 4. 1 重構式傳輸系統之分析 58 4. 4. 2 重構式誤碼率量測 60 4. 5 本章小結 63 第五章 光交叉連接系統傳輸 66 5. 1 光交叉連接之簡介 66 5. 2 光纖光柵式OXC原理 68 5. 3 2×2雙向OXC量測 71 5. 3. 1 迴路損失與實驗探討 72 5. 3. 2 誤碼率量測 76 5. 4 3×3三向OXC量測 79 5. 4. 1 實驗探討與迴路損失 80 5. 4. 2 誤碼率量測 83 5. 5 誤碼率與串擾探討 84 第六章 結論與未來展望 86 6. 1 結論 86 6. 2 未來展望 87 參考文獻 88

    [1.] M. D. Al-Amri, M. El-Gomati, and M. S. Zubairy, Optics in Our Time. Cham: Springer International Publishing, 2016.
    [2.] S. Reichel and R. Zengerle, “Effects of nonlinear dispersion in EDFA's on optical communication systems,” Journal of Lightwave Technology, vol. 17, no. 7, pp. 1152–1157, 1999.
    [3.] H. Y. Hsu, W. C. Lu, H. L. Minh, Z. Ghassemlooy, Y. L. Yu, and S. K. Liaw, “DWDM bidirectional wavelength reuse optical wireless transmission in 2×80 Gbit/s capacity,” 2013 2nd International Workshop on Optical Wireless Communications (IWOW), 2013.
    [4.] O. Akanbi, J. Yu, and G.-K. Chang, “Interleaved Bidirectional Transmission of 16 ×10-Gb/s DWDM Signals Using DPSK Modulation Format and In-line Semiconductor Optical Amplifiers,” Journal of Lightwave Technology, vol. 25, no. 1, pp. 325–334, 2007.
    [5.] T. T. Pham, H.-S. Kim, Y.-Y. Won, and S.-K. Han, “Bidirectional 1.25-Gbps Wired/Wireless Optical Transmission Based on Single Sideband Carriers in Fabry–PÉrot Laser Diode by Multimode Injection Locking,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2457–2464, 2009.
    [6.] R. Hui, Introduction to fiber-optic communications. London, United Kingdom: Academic Press, 2020.
    [7.] S. V. Kartalopoulos, Introduction to DWDM technology: data in a rainbow. Bellingham, WA: SPIE Optical Engineering Press, 2000.
    [8.] A. Tzanakaki, L. Zacharopoulos, and L. Tomkos, “Optical add/drop multiplexers and optical cross-connects for wavelength routed networks,” Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003.
    [9.] R. Rathod, R. Pechstedt, D. J. Webb, and D. A. Jackson, “Rayleigh backscattering in optical fibers: a noise limitation and a sensing mechanism,” Tenth International Conference on Optical Fibre Sensors, 1994.
    [10.] V. S. Bagad, Optical fiber communication. Pune: Technical Publications Pune, 2007.
    [11.] S. Yamamoto, H. Sakaguchi, and N. Seki, “Measurement of mode partition in DFB lasers,” Journal of Lightwave Technology, vol. 4, no. 6, pp. 672–679, 1986.
    [12.] H. Samimi and P. Azmi, “Subcarrier Intensity Modulated Free-Space Optical Communications in K-Distributed Turbulence Channels,” Journal of Optical Communications and Networking, vol. 2, no. 8, p. 625, 2010.
    [13.] G. Keiser, Optical fiber communications. New York, NY: McGraw-Hill Companies, 2015.
    [14.] Poznan University of Technology, “Fiber loss mechanisms,” July,2002. [Online]. Available: http://www.invocom.et.put.poznan.pl/~invocom/C/P1-9/swiatlowody_en/p1-1_2_2.htm.[Accessed June. 14, 2020].
    [15.] J. Wilson and J. F. B. Hawkes, Optoelectronics: an introduction. Harlow, England: Prentice Hall, 2006.
    [16.] Corning, “Explanation of reflection features in optical fiber as sometimes observed in OTDR Measurement Traces,” SMF-28 fiber datasheet, 2017
    [17.] 申云峰、何華杰、顧畹儀、李國瑞、徐大雄,“帶間與帶內串擾的理論分析與實驗研究”,中國激光,1998。

    [18.] S. Kasap, Optoelectronics and photonics: principles and practices. Boston: Pearson, 2013.
    [19.] K. Giboney, J. Rodwell, and J. Bowers, “Traveling-wave photodetector theory,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 8, pp. 1310–1319, 1997.
    [20.] H. Yamada, K. Takada, and S. Mitachi, “Crosstalk reduction in a 10-GHz spacing arrayed-waveguide grating by phase-error compensation,” Journal of Lightwave Technology, vol. 16, no. 3, pp. 364–371, 1998.
    [21.] T. Huszaník, J. Turán, and Ľ. Ovseník, “Utilization of 10 Gbps DWDM System with Duobinary Modulation into Passive Optical Network,” Journal of Communications Software and Systems, vol. 14, no. 4, 2018.
    [22.] GouMax, “Tunable Bandpass Filters (Gaussian),” Tunable bandpass filter datasheet, 2018.
    [23.] 林宜駿,“超寬頻低雜訊放大器設計與分析”,國立清華大學碩士論文,2017。
    [24.] 嵇經凱,“5 m/25 Gbps 水下無線光通訊系統”,國立臺北科技大學碩士論文,2018。
    [25.] 游凱迪,“一個操作在1.25Gb/s具備降低抖動能力的突發式時脈回復電路”,國立交通大學碩士論文,2009。
    [26.] Z. Zhang, J. Wang, L. Wang, and X. Chen, “Bidirectional 40Gb/s/λ, 100km-reach, channel-reuse WDM-PON employing tunable optical transceiver with optical intensity detection-based wavelength management,” Optical Fiber Technology, vol. 25, pp. 51–57, 2015.
    [27.] B.-H. Choi and S. S. Lee, “The effect of AWG-filtering on a bidirectional WDM-PON link with spectrum-sliced signals and wavelength-reused signals,” Optics Communications, vol. 284, no. 24, pp. 5692–5696, 2011.
    [28.] Christophe Peucheret, Direct & External Modulation Direct and External Modulation of Light, Department of Photonics Engineering Technical University Publishing, 2009.
    [29.] J. Bodnar, J. Candoré, J. Nicolas, and D. Caron, “Random photothermal thermography: Principle and examples of applications,” Proceedings of the 2010 International Conference on Quantitative InfraRed Thermography, 2010.
    [30.] S. B. Alexander, Optical communication receiver design. Bellingham, WA: SPIE Optical Engineering Press, 1997.
    [31.] 黃凡修,“10Gb/s光纖通訊系統傳送/接收電路模擬與實作”,國立中央大學碩士論文,2002。
    [32.] Hong, I-Wei, “Dispersion compensation in fiber optic communication systems”, Master's Theses, 2002.
    [33.] E. Goldstein, L. Eskildsen, and A. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photonics Technology Letters, vol. 6, no. 5, pp. 657–660, 1994.
    [34.] H. Venghaus and N. Grote, Fibre optic communication: key devices. Cham: Springer International Publishing, 2017.
    [35.] Y. Du, B. Sun, J. Li, and W. Zhang, Optical Fiber Sensing and Structural Health Monitoring Technology. Singapore: Springer Singapore, 2019.
    [36.] W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Loss properties due to Rayleigh scattering in different types of fiber,” Optics Express, vol. 11, no. 1, p. 39, 2003.
    [37.] Simatupang, Joni Welman, and Shu-Chuan Lin, “ A STUDY ON RAYLEIGH BACKSCATTERING NOISE IN SINGLE FIBER TRANSMISSION PON,” Int. J. Innov. Res. Technol. Sci, vol 4, ISSN: 2321-1156, 2016.
    [38.] S.-K. Liaw, S.-L. Tzeng, and Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Optics Communications, vol. 188, no. 1-4, pp. 63–67, 2001.
    [39.] P. Gysel and R. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” Journal of Lightwave Technology, vol. 8, no. 4, pp. 561–567, 1990.
    [40.] Carvalho, J. P., et al. “Optical cross-connect architectures based on fibre Bragg gratings and optical circulators,” Fourth Conference on Telecommunications. 2003.
    [41.] H. Yuan, W.-D. Zhong, and W. Hu, “FBG-Based Bidirectional Optical Cross Connects for Bidirectional WDM Ring Networks,” Journal of Lightwave Technology, vol. 22, no. 12, pp. 2710–2721, 2004.
    [42.] Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Optics & Laser Technology, vol. 36, no. 1, pp. 39–42, 2004.
    [43.] O. Frazão, I. Terroso, J. Carvalho, and H. Salgado, “Optical cross-connect based on tuneable FBG-OC with full scalability and bidirectionality,” Optics Communications, vol. 220, no. 1-3, pp. 105–109, 2003.
    [44.] E. Brinkmeyer, “Analysis of the backscattering method for single-mode optical fibers,” Journal of the Optical Society of America, vol. 70, no. 8, p. 1010, 1980.
    [45.] 蔡沛蒔,“功率補償之雙向光纖光柵式光交叉連接器研製”,國立臺灣科技大學碩士論文,2011。
    [46.] 賴英澤,“被動光網路監測技術改良之研究”, 國立臺灣科技大學碩士論文,2006。

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 2028/08/11 (校外網路)
    全文公開日期 2028/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE