簡易檢索 / 詳目顯示

研究生: 鄭朝陽
Chao-Yang Cheng
論文名稱: 用於遠端光纖即時監控的光纖光柵讀取機:設計與實現
Design and Implementation of Fiber Bragg Grating Sensor Interrogator for Remote Fiber Real-time Monitoring
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
梁財春
Tsair-Chun Liang
李三良
San-Liang Lee 
陳俊仲
Chun-Chung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 光纖光柵讀取機遠端光纖即時監控系統探測光源垂直應力感測
外文關鍵詞: FBG interrogation system, remote fiber real-time monitoring system, probe light source, vertical stress sensing
相關次數: 點閱:302下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發一台光纖光柵讀取機搭配遠端監控軟體構成一遠端光纖監控系統,取代市面上成本較昂貴的光學量測儀器,能夠針對大尺度或多座高架橋梁進行同步安全即時監控,保障民眾的生命安全。
    光纖光柵讀取機系統部分,經實驗後我們選用室溫環境下靜置8小時內穩定度較佳的“寬頻譜光源經可調式光學濾波器形式探測光源”,架構中摻鉺光纖吸收係數為17.5 dB/m、長度為5 m,實驗中可調式光學濾波器通道固定於C-band中段M4400位置,其輸出峰值波長穩定於1547.201 nm,沒有任何飄動現象,而峰值功率最大值為-24.06 dBm,最小值為-24.10 dBm,變動範圍僅±0.02 dB,十分穩定。此開發之光纖光柵讀取機可掃描監控的波長範圍為1527.996 nm至1563.029 nm,涵蓋整個C-band波段。
    遠端監控軟體部分,針對各項功能進行軟硬體整合測試後,其讀取機初始值設定功能、單根光纖光柵掃描功能、全橋梁自動監測功能與解析度及頻譜資料顯示範圍設定功能皆能夠確實動作,使用者能在遠端藉由遠端監控軟體,對光纖光柵讀取機進行控制並讀取監測結果數據加以分析。
    本文最後藉由遠端光纖監控系統進行垂直應力監測實驗,實際模擬即時監控功能,我們挑選三根鋪設於不同模擬橋梁且不同距離處的光纖光柵進行實驗,結果顯示FBG1-2、FBG2-4與FBG3-1對於垂直作用力的靈敏度分別為61.22 pm/N、61.22 pm/N與110.2 pm/N,線性度R2分別為0.999、0.999與0.9922。為了確保此監控系統的可靠度及準確性,本章進行再現性量測,其結果與第一次相同,此外,我們於選取之光纖光柵上施予0.98 N垂直作用力,靜置在室溫下8小時測試此監控系統對各FBG反射波長及峰值功率的穩定度,結果顯示反射波長非常穩定無飄動現象,峰值功率僅有少筆數據顯示±0.1 dB跳動。此監控系統在三座模擬橋梁且不同距離的感測端所監測到訊號呈現一相當穩定的狀態。


    This thesis shows that we develop a remote fiber monitoring system by using a remote monitoring software in a FBG interrogation system. The system is potential to replace the optical measuring instrument because it is cheaper in the market. On the other hand, the system synchronize large-scale and multi-viaduct bridge security with real-time monitoring to protect people's safety.
    After the experiment, we choose the “broadband light source pass through tunable filter type probe light source” in the FBG interrogation system. Because it has the best stability after putting it in the room temperature environment for 8 hours. In this structure, the absorption at 1530 nm of Erbium-doped fiber is 17.5 dB/m and the length is 5 m. The channel of Optoplex's C-band tunable filter is fixed at the middle (M4400) of C-band when the output peak wavelength is stable at 1547.201 nm without any fluttering phenomenon; while the maximum peak power is -24.06 dBm and the minimum is -24.10 dBm. The variation is very stable and the range is only ± 0.02 dB. The wavelength range for scan monitoring is from 1527.996 nm to 1563.029 nm developed in the FBG interrogation system and it contains the whole C-band wavelength.
    In the remote monitoring software, the initial value of interrogator setting function, single fiber grating scanning function, all bridges automatic monitoring function and resolution/span setting function can all work after the hardware and software integration test. Users are able to control the FBG interrogation system, read the monitoring results and analyze the data with remote monitoring software at a long distance.
    At last, the vertical stress monitoring experiment is carried out by the remote optical fiber monitoring system. It’s the actual simulation of real-time monitoring. We selected three fiber gratings laid out at different analog bridges and at different distances to do the experiment. The results show that the sensitivity of FBG1-2, FBG2-4 and FBG3-1 for the vertical force is 61.22 pm/N, 61.22 pm/N and 110.2 pm/N and for the linearity R2 is 0.999, 0.999 and 0.9922. In order to ensure the reliability and accuracy of this monitoring system, this chapter performs reproducibility testing. The results are just the same as the ones in the first testing. Besides, we applied 0.98 N vertical force on the selected fiber grating and put it at room temperature for 8 hours to test the stability of the FBG reflection wavelength and the peak power of this surveillance system. The results show that the reflection wavelength is very stable without any fluttering phenomenon. There are only few datum showing the drifting between ±0.1 dB. This monitoring system monitors the signal that shows a fairly stable state at the sensing ends as well as at different distances of the three analog bridges.

    摘要 I Abstract II 致謝 IV 目錄 V 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖光柵讀取機文獻探討與設計概念 5 2.1 相關文獻探討 5 2.1.1 相關架構探討 7 2.1.2 國外(美、韓國)市售光纖光柵讀取機Data log 10 2.2 光纖光柵讀取機系統光路設計概念 12 2.3 Optoplex's C-band Tunable Filter可調式光學濾波器 14 2.3.1 Optoplex's C-band Tunable Filter簡介 14 2.3.2 特性量測與應用方法 17 第三章 感測端光纖光柵研製 22 3.1 光纖光柵簡介與理論分析 23 3.1.1布拉格光纖光柵理論分析 23 3.1.2 長週期光纖光柵理論分析 26 3.2 感測端光纖光柵製作 28 3.2.1布拉格光纖光柵製作 30 3.2.2長週期光纖光柵製作 36 3.3 光纖光柵穩定性與可靠度優化 37 3.3.1光纖光柵退火機制 37 3.3.2使用碳纖維複材作保護機制夾帶溫度補償效應 41 第四章 光纖光柵讀取機探測光源分析 45 4.1 寬頻譜光源理論分析 45 4.2 寬頻譜光源經可調式光學濾波器形式探測光源 49 4.2.1 不同反射鏡架構實驗結果與討論 52 4.2.2 摻鉺光纖不同吸收係數實驗結果與討論 55 4.2.3 摻鉺光纖不同長度實驗結果與討論 56 4.2.4 寬頻譜光源經可調式光學濾波器形式探測光源 59 4.3 寬頻譜光源於環型共振腔光纖雷射形式探測光源 60 4.3.1 摻鉺光纖雷射理論分析 60 4.3.2 環型共振腔掺鉺光纖雷射架構 63 4.3.3 摻鉺光纖不同吸收係數實驗結果與討論 64 4.3.4 摻鉺光纖不同長度實驗結果與討論 68 4.4 兩種形式探測光源穩定度測試 71 第五章 遠端光纖監控系統整合測試 76 5.1 遠端光纖監控系統 76 5.1.1 光纖光柵讀取機系統建置 76 5.1.2 光纖光柵讀取機外觀布置及監控環境架設 77 5.2 遠端監控軟體 80 5.2.1 遠端監控軟體程式設計流程 80 5.2.2 基本介面說明 86 5.3 軟硬體整合功能測試 88 5.3.1 讀取機初始值設定及單根光纖光柵掃描功能 88 5.3.2 全橋梁自動監測功能 94 5.3.3 解析度及頻譜資料顯示範圍設定功能 98 第六章 遠端光纖監控系統於分佈式垂直應力之監測 107 6.1 光纖光柵垂直應力感測理論分析 107 6.2 多點垂直應力監測實驗結果與討論 109 6.2.1 模擬橋梁一FBG1-2 (734公尺處) 111 6.2.2 模擬橋梁二FBG2-4 (1235公尺處) 114 6.2.3 模擬橋梁三FBG3-1 (640公尺處) 117 6.3 遠端光纖監控系統之感測訊號穩定度測試 119 第七章 結論與未來展望 121 7.1 結論 121 7.2 未來展望 123 著作 126 參考文獻 127

    [1] 洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”,台灣科技大學電子工程研究所碩士論文,2006。
    [2] 彭利標,“光纖的非線性光學效應及其對光纖通信的影響”,天津理工大學中環信息學院中文信息期刊,2014。
    [3] 安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004。
    [4] A. Csipkes, S. Ferguson, T. W. Graver, T. C. Haber, A. Méndez, and J. W. Miller, “The maturing of optical sensing technology for commercial applications, ” Micron Optics Inc, 2005.
    [5] 陳怡彣,“臺灣橋梁整體構件目視檢測指標之研究”,台灣大學土木工程研究所碩士論文,2011。
    [6] 臺灣地區橋梁管理資訊系統: http://tbms.iot.gov.tw/bms2_test/。
    [7] Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang and J. C. Chern, “Online monitoring of highway bridge construction using fiber Bragg grating sensors, ” Smart Materials and Structures, vol. 14, no. 5, pp. 1075-1082, 2005.
    [8] T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Engineering Structures, vol. 28, no. 5, pp. 648-659, 2005.
    [9] 高聖傑,“光纖光柵壓力感測器之研發”,交通大學土木工程研究所碩士論文,2006。
    [10] 施旻汶,“自動化無人飛行載具輔助擷取橋梁影像之研究”,中央大學營建管理研究所碩士論文,2015。
    [11] I. C. Song, S. K. Lee, S. H. Jeong and B. H. Lee , “Absolute strain measurements made with fiber Bragg grating sensors,” Applied optics, vol. 43, no. 6, pp. 1337-1341, 2004.
    [12] S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge and S. M. Schultz, “Compact optical fiber sensor smart node,” Review of scientific instruments, vol. 78, no. 3, pp. 035108, 2007.
    [13] 黃艷紅、高曉蓉、杜路泉,“光纖光柵傳感器在橋梁缺陷檢測和結構健康監測中的應用”,鐵道技術監督,pp. 17-20,2007。
    [14] 周智、歐進萍,“光纖光柵傳感器及其在橋梁結構健康監測中的應用”,哈爾濱工業大學土木工程學院論文,2006。
    [15] B. C. Lee, E. J. Jung, C. S. Kim and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 μm Fourier domain mode-locked wavelength-swept laser,” Measurement Science and Technology, vol. 21, no. 9, pp. 094008, 2010.
    [16] D. Donisi, R. Beccherellib and A. d’Alessandroa, “Lightwave Technologies for Interrogation Systems of Fiber Bragg Gratings Sensors,” An Introduction to Optoelectronic Sensors, vol. 7, pp. 95, 2009.
    [17] M. D. Todd, G. A. Johnson and B. L. Althouse, “A novel Bragg grating sensor interrogation system utilizing a scanning filter, a Mach-Zehnder interferometer and a 3× 3 coupler,” Measurement science and technology, vol 12, no. 7, pp. 771-777, 2001.
    [18] A. Ezbiri, A. Munoz, S. E. Kanellopoulos and V. A. Handerek, “High resolution fibre Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,” Optical Techniques for Smart Structures and Structural Mmonitoring (Digest No. 1997/033), IEE Colloquium on. IET, 1997.
    [19] G. Gagliardi, M. Salza, P. Ferraro and P. D. Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, pp. s507-s513, 2006.
    [20] R. Caputo, L. De Sio, A. Veltri and C. Umeton, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Optics letters, vol. 29, no. 11, pp. 1261-1263, 2004.
    [21] Y. S. Kwon, M. O. Ko, M. S. Jung, I. G. Park, N. Kim, S. P. Han, H. C. Ryu, K. H. Park and M. Y. Jeon, “Dynamic sensor interrogation using wavelength-swept laser with a polygon-scanner-based wavelength filter,” Sensors, vol. 13, no. 8, pp. 9669-9678, 2013.
    [22] S. W. Lee, H. W. Song, M. Y. Jung and S. H. Kim, “Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography,” Opt. Express , vol. 19, no. 22, pp. 21227-21237, 2011.
    [23] J. Park, Y. S. Kwon, M. O. Ko and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation based on resonance Fourier domain mode-locked fiber laser,” Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP), 2016 IEEE, pp.291-292, 2016.
    [24] 美國Micron Optics SM130-200: http://www.infap.de/media/307/cms_469a267c2ba66.pdf
    [25] 美國National Instruments PXIe-4844:
    http://www.ni.com/datasheet/pdf/en/ds-338
    [26] 韓國GDS FS-5060:
    http://gdskorea.net/eng/sub2/4.php
    [27] 韓國Fiberpro FI3200:
    file:///C:/Users/Cheng/Desktop/FBG%20Interrogation%20system_FI3200.pdf
    [28] 資料擷取 (DAQ):
    http://www.ni.com/data-acquisition/what-is/zht/
    [29] Optoplex's C-band Tunable Filter:
    http://www.optoplex.com/Optical_Tunable_Filter.htm
    [30] A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam and E. J. Frieble, “Fiber grating sensor,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442-1463, 1997.
    [31] Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEE Photonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [32] 高雪松,”光纖光柵在光通信領域中的應用”,光纖新聞網,2005。
    [33] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, no. 9, pp. 919-933, 1973.
    [34] 畢衛紅、張闖,“光纖Bragg光柵的反射特性研究”,傳感器技術,第22期,第8卷,2003。
    [35] K.O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.
    [36] A. Singh, D. Engles, A.Sharma and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik - International Journal for Light and Electron Optics, vol. 125, no. 1, pp. 457-460, 2014.
    [37] 李雅萍,“Fabry-Perot etalon 所組成之光強增益平坦器之研究”,中央大學光電科學研究所碩士論文,2001。
    [38] T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, 1997.
    [39] K.O. Hill, Y. Fujii, D.C. Johnsen and B.S. Kawasaki, “ Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, vol.32, no.10, pp. 647-649, 1978.
    [40] C. K. Soh, Y. Yang and S. Bhalla, “Smart Materials in Structural Health monitoring control and biomechanics,” Springer (Germany) and Zhejiang University Press (China), pp. 414-420, 2012.
    [41] G. Meltz, W. W. Morey and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method,” Optics Letters, vol.14, no.15, pp. 823-825, 1989.
    [42] 陳宣臣,“波長可調光纖光柵之研製與應用”,台灣科技大學電子工程研究所碩士論文,2004。
    [43] K.O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [44] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002。
    [45] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005。
    [46] 洪士軒,“用於液體多參數分析之新穎光纖感測架構設計”,台灣科技大學電子工程研究所碩士論文,2014。
    [47] 王俊容,“光纖光柵與光循環器組成之光纖雷射: 研製與應用”,台灣科技大學電子工程研究所碩士論文,2004。
    [48] T. Erdogan, V. Mizrahi, “Decay of ultraviolet‐induced fiber Bragg gratings,” Journal of Applied Physics, vol. 76, no. 1, pp. 73-80, 1994.
    [49] S. R. Baker, H. N. Rourke, V. Baker and D. Godchild, “Thermal decay of fiber Bragg gratings written in boron and germanium co-doped silica fiber,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1470-1477, 1997.
    [50] G. W. Yoffe, P. A. Krug, F. Ouellette and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Applied Optics, vol. 34, no. 30 pp. 6859-6861, 1995.
    [51] T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura and Y. Hattori, “Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes,” Electronics Letters, vol. 33, no. 5, pp. 417-419, 1997.
    [52] M. G. Xu, J. L. Archambault, L. Reekie and J. P. Dakin, “Thermally-compensated bending gauge using surface mounted fiber gratings,” International Journal of Optoelectronics, vol. 9, no. 3, pp. 281-283, 1994.
    [53] G. W. Yoffe, P. A. Kurg, F. Ouellette and D. A. Thorncraft, “Temperature compensated optical fiber Bragg gratings,” Optical Fiber Communication Conference, vol. 8, pp. 134-135, 1995.
    [54] 林志豪,“以複合材料熱膨脹補償布拉格波長飄移量之探討”,台灣大學機械工程研究所碩士論文,2002。
    [55] 蕭文皓,“交通安全感測網路之光開關設計及參數量測”,台灣科技大學電子工程研究所碩士論文,2015。
    [56] 鄭婉羚,“光纖光柵式雙向光信號塞取多工機之研究”,台灣科技大學電子工程研究所碩士論文,2005。
    [57] 王鴻杰,“光纖雷射研製與探討”,高雄第一科技大學光電工程研究所碩士論文,2012。
    [58] L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Optics Letters, vol. 37, no. 7, pp. 1148-1150, 2012.
    [59] 廖顯奎,“當代光纖通訊”,初版,台北,高立圖書,2012年。
    [60] 廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,台灣科技大學電子工程研究所碩士論文,2004。
    [61] 范錦程,“具寬頻帶波長可調光纖光柵之C+L band光纖雷射之研製”,台灣科技大學電子工程研究所碩士論文,2014。
    [62] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [63] 鍾國興,“建構於光纖光柵之光纖雷射研製”,台灣科技大學電子工程研究所碩士論文,2007。
    [64] R. Kashyap, “Fiber Bragg gratings,” Academic Press, 1999.
    [65] Bench-top Type ASE light source :
    https://www.fiberlabs-inc.com/bt_ase/ase-scl-band/

    QR CODE