簡易檢索 / 詳目顯示

研究生: 葉威廷
Wei-Ting Yeh
論文名稱: 多層高分子隔離膜結構對於鋰電池性能與安全性影響之研究
Effects of structure and morphology of polymeric multilayer separators on performance and safety of li-ion batteries
指導教授: 洪伯達
Po-Da Hong
口試委員: 洪伯達
Po-Da Hong
戴子安
Chi-An Dai
王復民
Fu-Ming Wang
劉奕宏
Yi-Hung Liu
蕭育生
Yu-Sheng Hsiao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 81
中文關鍵詞: 鋰電池電池隔離膜電化學結構性能相關多孔材料
外文關鍵詞: Li-ion Batteries, Battery Separator, Electrochemistry, Structure-Property Relations, Porous Materials
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隔離膜用作為鋰離子電池四大材料之一,但本身作為非極性材料,在電池的實際運作過程中不參與反應,故相對少的研究對於隔離膜本身進行深入的討論。理想的隔離膜材料,在良好的機械強度下,在厚度上需要越薄越好; 在電池短路發生時,可以抵抗熱失控,維持融體的完整性; 在隔離膜的阻抗上,希望可以越低越好,用以提高電池的性能。除此之外,最好可以在濫用測試發生時,提供熱斷路的功能。聚烯烴等泛用的高分子材料所製造的隔離膜,包含聚乙烯 (PE) 或聚丙烯 (PP) 的改質或進一步在PE 或 PP的表面進行塗覆,用以滿足上述需求是工業化過程常見的手段。實質上,隔離膜的微結構及型態仍會影響到電池的安全性及性能。本篇論文以多層高分子隔離膜結構對於鋰電池性能與安全性影響之研究為出發點,進一步討論如何滿足現今在低阻抗及高安全性隔離膜的需求,分為以下二個部分 (三個主題) 進行研究:
    第一部分:我們由多層PP/PE/PP 隔離膜的結構為出發點,討論結晶及非晶結構對於電池性能的影響,對於結晶結構而言當結晶尺寸變小,可以提供更多的鋰離子在充放電過程中更多的通道 (藉由非晶結構),藉此降低隔離膜阻抗,並提高電池的充放電性能。接下來,進一步的研究PP/PE/PP 多層隔離膜在濫用測試-過充電條件下,並將隔離膜結構的轉變分為幾個主要階段。其中在隔離膜斷路 (PE 結構熔融)前,電池的充電電壓出現了一個特徵峰,這個特徵峰可以歸咎於隔離膜介面間不規整結構的熔融所引發。
    第二部分:我們提出了一種方法用以降低陶瓷塗覆聚烯烴多層隔離膜的阻抗方法。藉由這個方法可以將陶瓷塗層製造形成連續的網狀結構或海島型的結構,這樣,原先。因為陶瓷塗層所造成的內阻抗上升的缺點,可以藉由這個方法解決,同時在其他性能上 (電池的充放電、循環性能) 能夠有良好的維持。


    In recent decades, most separators used for lithium-ion batteries (LIB) have been manufactured using polyolefin systems, such as polypropylene (PP), polyethylene (PE), and PP/PE/PP composites, even though the low wettability with liquid electrolytes and poor heat resistance of polyolefin systems have limited their applications. In order to mitigate these weaknesses, different kinds of separators have been investigated; however, PP, PE, and PP/PE/PP base films with functional coating layers remain the mainstream separator for LIBs. The structure and morphology of polymeric multilayer separators directly affect the performance and safety of LIBs and hence this thesis investigates the specific nature of these effects as follows.

    Part 1
    The separator film is a key component in the development of high-power, high-energy-density LIBs. Increasing porosity or air permeability by making the separator thinner or increasing the stretch ratio to enlarge the pore size is the standard way to reduce the impedance of the separator and improve LIB performance. In past studies on tortuosity and numerical simulations of the structure of the separator, agglomerated spheres and prolate and oblate ellipsoids have been used to simulate the interaction between a polymer skeleton and the pores of porous separators. According to these studies, the MacMullin number which is an indicator combining the thickness, porosity, and tortuosity of the separator directly affects the impedance of the separator. In fact, the material used in a battery separator is generally a semi-crystalline polyolefin and the influence of the crystalline and amorphous phases on the characteristics of the polymer skeleton should also be taken into consideration. We report that the fine structure of a semi-crystalline polymer is another key factor in reducing the impedance of the separator and enhancing the discharge rate performance of a battery cell according to the analysis results of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and scanning electron microscope (SEM) studies. A polyolefin (semi-crystalline polymer) LIB separator with a smaller and more uniform domain size than standard can generate more channels in the amorphous phase for transporting lithium ions between the cathode and anode, resulting in a lower impedance of the membrane and increasing LIB performance.

    Furthermore, most LIB separators are manufactured using polyolefin; however, such thermoplastic materials may undergo structural changes under high voltage or temperatures. Thus, we investigate the structural and morphological changes undergone by separators during overcharge conditions. Unlike single-layer PP separators, a composite separator with an interface, such as a PP/PE/PP separator, exhibits a characteristic peak in voltage during the overcharging process before the occurrence of the shutdown mechanism in the PE layer. As the temperature rises, parts of the irregular crystalline structure of a PE melt because of their lower melting temperature at the PP/PE interface. This results in local shrinkage and interface disturbances, and the lithium-ion channel becomes partially blocked. The lithium ions then flow through alternative channels, and this causes the voltage to abruptly increase during overcharging. The experimental results clearly indicate that the microstructural changes of the separator are an important aspect of the above-mentioned phenomenon.

    Part 2
    The current method for manufacturing separators with a heat-resistant layer involves making inorganic particles by stretching a precursor film and then coating the slurry comprising inorganic particles on the surface of the aforementioned separator. The porous separator surface is easily covered by ceramics, which will result in increased air permeability of the separator, reduced electrolyte absorption, and thus increased internal impedance of the separator or LIB. In this study, we provide a modified method for producing a ceramic-coated separator with low film impedance for LIBs. Based on the modified method, the surface of the coating layer can be formed as a continuous network or island structure depending on the stretching method. In this way, the problems of increased impedance and reduced battery performance due to the ceramic coating layer can be solved.

    In this thesis, we present two distinguishing features and three studies. The effects of the structure and morphology of polymeric multilayer separators on the performance and safety of LIBs are presented.

    Contents Contents V Principal Notation VII Chapter 1 General description 1 1.1 Global warming issues 1 1.2 LIBs for transportation 1 1.2.1 Outlook 1 1.2.2 Technology trends 2 1.3 Battery Separators 3 1.3.1 Functional Separator 6 1.4 The purpose of this thesis 7 Chapter 2 Experimental Section 8 2.1 Separators preparation (base film) 8 2.2 Separators preparation (coated film) 8 2.3 Structure and morphology analysis. 9 2.3.1 Surface structure analysis (SEM) 9 2.3.2 Surface structure analysis (AFM) 10 2.3.3 Diffraction analysis 10 2.3.4 Orientation function and long period: WAXD and SAXS 10 2.3.5 Orientation function (FTIR) 10 2.3.6 Orientation function (WAXD) 11 2.4 Electrochemical measurements: 12 2.4.1 Electrochemical measurements: Coin Cell 12 2.4.2 Electrochemical measurements: 1 Ah 13 2.4.3 Electrochemical measurements: 5 Ah 13 2.4.4 Electrochemical measurements (Rate Performance, DCIR) 13 2.4.5 Abuse test: overcharge test 14 2.4.6 Impedance Test (Separator) 14 2.4.7 Electrochemical impedance spectroscopy (EIS) 14 2.4.8 Separator shutdown test 14 2.4.9 Air permeability measurement (Gurley) 15 2.4.10 Pore size analysis 15 Chapter 3 Investigations on structure and morphology of multilayer polyolefin separators for lithium-ion batteries with improved impedance performance 16 3.1 Section introduction 16 3.2 Results and discussion 17 3.2.1 Physical properties of the separator 17 3.2.2 Analysis of film impedances and MacMullin number 19 3.2.3 Analysis for micro-structure of separators – Orientation Function (WAXD) 21 3.2.4 Analysis for micro-structure of separators – 1-D correction function (SAXS) 22 3.2.5 Analysis for micro-structure of separators (AFM, SEM, PMI) 25 3.2.6 Cell Performance 28 3.3 Conclusion 31 Chapter 4 Structure and morphological changes of multilayer separators for lithium ion batteries under abuse/overcharge conditions 32 4.1 Section introduction 32 4.2 Results and discussion 34 4.2.1 Separator shutdown test and melting endothermic curve 34 4.2.2 Profile of voltage, current, and temperature during overcharging 35 4.2.3 Battery appearance and EIS analysis 38 4.2.4 Gurley and porosity analysis of the separator 40 4.2.5 WAXD patterns and profiles 41 4.2.6 Orientation function by FTIR (Normal Direction) 42 4.2.7 Orientation function from WAXD 42 4.2.8 Long-period analysis (SAXS) 43 4.2.9 Porod’s law 44 4.2.10 Analysis of PP/PE interface 45 4.3 Conclusion 47 Chapter 5 A modified ceramic-coating separator with low film impedance approach for lithium-ion batteries 49 5.1 Section introduction 49 5.2 Results and discussion 51 5.2.1 Schematic diagram of the producing method 51 5.2.2 Surfaces for different coating separators 52 5.2.3 SEM images of Al2O3-PP/PE/PP composite separator 53 5.2.4 Physical properties and electrochemical of the separators 55 5.3 Conclusion 60 Chapter 6 Summaries 62 References 64

    [1] Historical carbon dioxide emissions from global fossil fuel combustion and industrial processes from 1758 to 2020. https://www.statista.com/statistics/264699/worldwide-co2-emissions
    [2] Sources of Greenhouse Gas Emissions. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
    [3] Bruno Scrosati and Jürgen Garche, Journal of Power Sources, 2010, 195, 2419-2430.
    [4] Arumugam Manthiram., The Journal of Physical Chemistry Letters, 2011, 2, 176–184.
    [5] SNE Research http://www.sneresearch.com/_new/eng/main.php
    [6] Hideki Ogihara, Battery Japan Technical Conference Program, 2017, BJ-9.
    [7] Xiao-Guang Yang, Teng Liu and Chao-Yang Wang, Nature Energy, 2021, 6, 176–185.
    [8] Dave Andre, Sung-Jin Kim, Peter Lamp, Simon Franz Lux, Filippo Maglia, Odysseas Paschosa and Barbara Stiasznya, Journal of Materials Chemistry A, 2015, 3, 6709-6732
    [9] Valadoula Deimede and Costas Elmasides, Energy Technology, 2015, 3, 453-468
    [10] Haruyuki Yoneda, Yoshifumi Nishimura, Yoshinao Doi, Masahiko Fukuda and Mitsuo Kohno, Polymer Journal, 2010, 10, 425-437
    [11] Marie Francine Lagadec, Raphael Zahn and Vanessa Wood, Nature Energy, 2019, 4, 16-25
    [12] Carlos M. Costa, Yong-Hyeok Lee, Jung-Hwan Kim, Sang-Young Lee and Senetxu Lanceros-Mendez, Energy Storage Mater., 2019, 22, 346-375.
    [13] Jang-Hoon Parka, Woong Park, Jong Hun Kim, Dongjo Ryoo, Hoon Sik Kim, Yeon Uk Jeong, Dong-Won Kim and Sang-Young Lee, Journal of Power Sources, 2011, 196, 7035–7038.
    [14] Ji-Ae Choi, Sa Heum Kim and Dong-Won Kim, Journal of Power Sources, 2010, 195, 6192.
    [15] Won-Kyung Shin and Dong-Won Kim, Journal of Power Sources, 2013, 226, 54-60.
    [16] Chuan Shi, Peng Zhang, Lixiao Chen, Pingting Yang and Jinbao Zhao, Journal of Power Sources, 2014, 270, 547-553.
    [17] Jiayi Li, Yizhuo Zhang, Rong Shang, Chen Cheng, Yan Cheng, Jianxin Xing, Zhenzhen Wei and Yan Zhao, Energy Storage Materials, 2021, 43, 143-157.
    [18] Bismark Boateng, Xingyi Zhang, Cheng Zhen, Dongjiang Chen, Yupei Han, Chao Feng, Ning Chen and Weidong He, Nano Select 2021, 2, 99-101.
    [19] Rekha Narayan, Christel Laberty-Robert, Juan Pelta, Jean-Marie Tarascon and Robert Dominko, Advanced Energy Materials, 2022, 12, 2102652
    [20] Xingyi Zhang, Qingwei Sun, Cheng Zhen, Yinghua Niu, Yupei Han, Guangfeng Zeng, Dongjiang Chen, Chao Feng, Ning Chen, Weiqiang Lv and Weidong He, Energy Storage Materials, 2021, 37, 628-647.
    [21] Chao Feng, Xuchang Wang, Guangfeng Zeng, Dongjiang Chen, Weiqiang Lv, Yupei Han, Xian Jian, Shi Xu Dou, Jie Xiong and Weidong He, Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 14, 1900504
    [22] Yucheng Wen, Xianshu Wang, Yan Yang, Mingzhu Liu, Wenqiang Tu, Mengqing Xu, Gengzhi Sun, Seigou Kawaguchi, Guozhong Cao and Weishan Li, J. Mater. Chem. A, 2019, 7, 26540–26548.
    [23] Yuanlong Shao, Maher F. El-Kady, Jingyu Sun, Yaogang Li, Qinghong Zhang, Meifang Zhu, Hongzhi Wang, Bruce Dunn and Richard B. Kaner, Chemical Reviews, 2018, 118(18),9233-9280.
    [24] Robert Joel Samuel, Journal of Polymer Science: Polymer Physics Edition, 1970, 17, 535-568.
    [25] Seyed H. Tabatabaei, Pierre J. Carreau and Abdellah Ajji, Polymer, 2009, 50, 4228-4230.
    [26] Seyed H. Tabatabaei, Pierre J. Carreau and Abdellah Ajji, Journal of Membrane Science, 2009, 345, 148-159.
    [27] W. Wade Adams, D. Yang, Edwin L. Thomas, Journal of Materials Science, 1986, 21, 2239-2253.
    [28] Sprague, B. S., Journal of Macromolecular Science, Part B, 1973, B8(1), 157
    [29] R. H. Olley and D. C. Bassett, Polymer, 1982, 23, 1707-1710
    [30] Lei Ding, Chao Zhang, Tong Wu, Feng Yang, Fang Lan, Ya Cao, and Ming Xiang., Journal of Power Sources, 2020, 466, 228300.
    [31] Ward, I. M., Coates, P. D. and Dumoulin, M. M. Solid Phase Process of Polymers; Hanser Publishers: Munich, 2000.
    [32] Zigmond W. Wilchinsky, Journal of Applied Physics, 1960, 31, 1696.
    [33] Johannes Landesfeind, Johannes Hattendorff, Andreas Ehrl, Wolfgang A. Wall and Hubert A. Gasteiger, Journal of The Electrochemical Society, 2016, 163, A1373-A1387
    [34] F. Laman, M. A. Gee and J. Denovan, Journal of The Electrochemical Society, 1993, 140, L51-L53.
    [35] Dhevathi Rajan Rajagopalan Kannan, Pranaya Krishna Terala ,Pedro L. Moss and Mark H. Weatherspoon, International Journal of Electrochemistry, 2018, 192570
    [36] Yuria Saito, Sahori Takeda, Junichi Nakadate, Tomoya Sasaki and Taehyung Cho, The Journal of Physical Chemistry C, 2019, 123, 21888-21895.
    [37] Sahori Takeda, Yuria Saito, Ikue Kaneko and Hideya Yoshitake, The Journal of Physical Chemistry C, 2020, 124, 1827-1835.
    [38] Yuria Saito, Wataru Morimura, Sadamu Kuse, Rika Kuratani and Satoshi Nishikawa, The Journal of Physical Chemistry C, 2017, 121, 2512-2520.
    [39] Seyed H. Tabatabaei, Pierre J. Carreau and Abdellah Ajji, Polymer, 2009, 50, 4228-4230.
    [40] Kamalnayan Kantilal Patel, Jens M Paulsen, Johann Desilvestro, Journal of Power Source, 2003, 122, 144-152
    [41]Gennady Y. Gor, John Cannarell, Jean H. Prevost, and Craig B. Arnoldb, Journal of The Electrochemical Society, 2014,161, F3065-F3071.
    [42] Gennady Y.Gor, John Cannarella, Collen Z.Leng, Aleksey Vishnyakovc and Craig B.Arnold, Journal of Power Source, 2015, 294, 167-172
    [43] Shutian Yan, Xinran Xiao, Xiaosong Huang, Xiaodong Li, and Yue Qi, Polymer, 2014, 55, 6282-6292
    [44] Pankaj Arora, Ralph E. White and Marc Doyle, Journal of The Electrochemical Society, 1998, 145, 3647-3667.
    [45] Ethan Wang, Chao-Hung Chiu, Po-Heng Chou Journal of Power Sources, 2020, 461, 228148.
    [46] QingFeng Yuan, Fenggang Zhao, Weidong Wang, Yanming Zhao, Zhiyong Lianga Danlin Yana, Electrochimica Acta 2015, 178, 682-688.
    [47] Daban Lu, Shaoxiong Lin, Shuwan Hu, Wen Cui, Tingting Fang, Azhar Iqbal, Zheng Zhang and Wen Peng, Journal of Solid State Electrochemistry, 2021, 25, 315-325.
    [48] Fredrik Larsson and Bengt-Erik Mellander, Journal of The Electrochemical Society, 2014, 161, A1611-1617.
    [49] Pius Victor Chombo and Yossapong Laoonual Journal of Power Sources, 2020, 478, 228649.
    [50] Jiana Ye, Haodong Chen, Qingsong Wang, Peifeng Huang, Jinhua Sun and Siuming Lo, Applied Energy, 2016, 182, 464-474.
    [51]Lishu Liu, Xuning Feng, Christiane Rahe, Weihan Li, Languang Lu, Xiangming He, Dirk Uwe Sauer and Minggao Ouyang, Journal of Energy Chemistry, 2021, 61, 269-280.
    [52] Chunhao Yuan, Lubing Wang, Sha Yin and Jun Xu, Journal of Power Sources, 2020, 467, 228360.
    [53] Marie Francine Lagadec, Raphael Zahn and Vanessa Wood, Nature Energy, 2019, 4, 16–25.
    [54] Dongsheng Ren, Xuning Feng, Languang Lu, Xiangming He and Minggao Ouyang Applied Energy, 2019, 250, 323-332.
    [55] E.P. Roth, D.H., Doughty and D.L. Pile, Journal of Power Sources, 2007, 174, 579-583.
    [56] D. Belov and Mo-Hua Yang, Journal of Solid State Electrochemistry, 2008, 12, 885-894.
    [57] Muhammad Waqas, Shamshad Ali, Chao Feng, Dongjiang Chen, Jiecai Han and Weidong He, Small 2019, 15, 1901689.
    [58] Hailin Zhang, Hongbin Zhao, Muhammad Arif Khan, Wenwen Zou, Jiaqiang Xu, Lei Zhangab and Jiujun Zhang, Journal of Materials Chemistry A, 2018, 6, 20564–20620.
    [59] Ganesh Venugopal, John Moore, Jason Howard and Shekhar Pendalwar, Journal of Power Sources, 1999, 77, 34-41.
    [60] R. H. Olley and D. C. Bassett, Polymer, 1982, 23, 1707-1710.
    [61] Lei Ding, Chao Zhang, Tong Wub, Feng Yang, Fang Lan, Ya Cao, Ming Xiang, Journal of Power Sources, 2020, 466, 228300.
    [62] Ian M. Ward, Phil D. Coates and Michel M. Dumoulin Solid Phase Process of Polymers; Hanser Publishers: Munich, 2000.
    [63] Doron Aurbach, Kira Gamolsky, Boris Markovsky, Gregory Salitra, Yossi Gofer, Udo Heider, Ruediger Oesten and Michael Schmidt, Journal of The Electrochemical Society, 2000, 147, 1322-1331.
    [64] Anna-Karin Hjelm and Göran Lindbergh, Electrochimica Acta, 2002, 47, 1747-1759.
    [65] D Djian, F. Alloin, S. Martinet, H. Lignier and J. Y. Sanchez, Journal of Power Sources, 2007, 172, 416-421.
    [66] Akira Mizuno, Hideyuki Nakamoto, Nobuyasu Kumura and Yoshimitsu Moritani Polymer, 1992, 33, 2229-2230.
    [67] G. Porod Kolloid-Zeitschrift, 1951, 124, 83-114.
    [68] Jianchao Chen, Yongda Yan1, Tao Sun, Yue Qi and Xiaodong Li, Journal of The Electrochemical Society, 2014, 161, A1241-A1246.
    [69] Hun Lee, Meltem Yanilmaz, Ozan Toprakci, Kun Fu and Xiangwu Zhang, Energy & Enviromental Science, 2014, 7, 3857-3886.
    [70] Ashish Gogia, Yuxing Wang, Amarendra K. Rai, Rabi Bhattacharya, Guru Subramanyam and Jitendra Kumar, ACS Omega, 2021, 6, 4204-4211.
    [71] Seyed H. Tabatabaei, Pierre J. Carreau and Abdellah Ajji, Journal of Membrane Science, 2009, 345, 148-159.
    [72] Won-Kyung Shin and Dong-Won Kim, Journal of Power Sources 2013, 226, 54-60.
    [73] Jang-Hoon Park, Joo-Hyun Choa, Woong Parka, Dongjo Ryoob, Su-Jin Yoonc, Jong Hun Kimc,Yeon Uk Jeong and Sang-Young Lee, Journal of Power Sources , 2010, 195, 8306-8310.
    [74] Chuan Shi, Peng Zhang, Lixiao Chen, Pingting Yang and Jinbao Zhao, Journal of Power Sources, 2014, 270, 547-553.
    [72] Zhuyi Wnag, Fanling Guo, Chang Chen, Liyi Shi, Shuai Yuan, Lining Sun and Jiefang Zhu, ACS Applied Materials & Interfaces, 2015, 7, 3314-3322.
    [75] W. Wade Adams, D. Yang, Edwin L. Thomas, Journal of Materials Science, 1986, 21, 2239-2253.
    [76] Farhad Sadeghi, Pierre J. Carreau and Abdellah Ajji, Polymer, 2009, 50, 4228-4230.
    [77] K. Prasanna, Chang-Soo Kim and Chang Woo Lee, Materials Chemistry and Physics, 2014, 146, 545-550.
    [78] Manuel Weiss, Raffael Ruess, Johannes Kasnatscheew, Yehonatan Levartovsky, Natasha Ronith Levy, Philip Minnmann, Lukas Stolz, Thomas Waldmann, Margret Wohlfahrt-Mehrens, Doron Aurbach, Martin Winter, Yair Ein-Eli and Jürgen Janek, Advanced Energy Materials 2021, 11, 2101126.

    無法下載圖示 全文公開日期 2025/08/12 (校內網路)
    全文公開日期 2062/08/12 (校外網路)
    全文公開日期 2062/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE