簡易檢索 / 詳目顯示

研究生: 李宥霖
Yu-Lin Lee
論文名稱: 鋰電池模組之管理及控制策略
Management and Control Strategies for Lithium-ion Battery Modules
指導教授: 林長華
Chang-Hua Lin
口試委員: 謝冠群
賴炎生
王見銘
陳偉倫
劉添華
黃仲欽
林長華
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 147
中文關鍵詞: 主從式電池管理系統主動平衡策略電池功率平滑化策略濃差極化現象續航力
外文關鍵詞: master-slave battery management system, active balancing strategy, battery power smoothing control strategy, the concentration polarization phenomenon, endurance
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了三種鋰電池模組於不同應用之管理與控制策略,分別為基於主從式電池管理系統之主動平衡策略、具電池功率平滑化策略之電池管理系統以及具緩解鋰電池模組濃差極化現象之控制策略。首先,傳統的電池管理系統主要包含監測、電池被動平衡和保護三大功能。然而,被動平衡存在一些缺點,包括僅透過電能消耗進行平衡、可能產生大量熱能、難以應對快速變化需求等。基於主從式電池管理系統的主動平衡策略不僅有效地克服了被動平衡的種種缺點,還在成本和性能之間找到了平衡點。同時,主從式架構使得系統更適應實際應用需求,提高了其整體效能和可管理性。其次,具電池功率平滑化策略之電池管理系統是應用於電動機車,採用混合儲能系統架構,以高功率密度的儲能元件作為負載功率之緩衝元件,負責降低電池所承受的劇烈負載功率變化,以及再生制動時所產生之回充能量,以減輕電池的負荷及充放電次數,提高了整體系統的性能和可靠性。最後,所提具緩解鋰電池模組濃差極化現象之控制策略亦是採用混合儲能系統架構實現電池管理系統,與前者不同之處是利用超級電容緩解鋰電池模組因濃差極化現象而無法供電的情況,藉此可誘發鋰電池輸出潛藏的電量,以增加系統之續航力。


    This dissertation proposes three management and control strategies for lithium-ion battery modules in different applications: an active balancing strategy based on a master-slave battery management system, a battery management system with a battery power smoothing control strategy, and a control strategy for mitigating the battery module concentration polarization phenomenon. First, traditional battery management systems mainly include three significant functions: monitoring, battery passive balancing, and protection. However, passive balancing of batteries has some disadvantages, including balancing only through power consumption, the possibility of generating a large amount of heat energy, and difficulty in coping with rapidly changing demands. The active balancing strategy based on the master-slave battery management system effectively overcomes the shortcomings of passive balancing and finds a trade-off between cost and performance. At the same time, the master-slave architecture makes the system more adaptable to actual application needs and improves its overall performance and manageability. Secondly, the battery management system with battery power smoothing control strategy is applied to electric motorcycles. It adopts a hybrid energy storage system architecture, which uses high-power density energy storage components as buffer components for load power. The proposed system is responsible for reducing the dramatic load power changes experienced by the battery and the recharge energy generated during regenerative braking. The battery's burden and charging and discharging times are reduced, and the performance and reliability of the overall system are improved. Finally, the control strategy that mitigates the lithium-ion battery module's concentration polarization phenomenon also uses a hybrid energy storage system architecture to implement the battery management system. The difference is that the control strategy that mitigates the concentration polarization phenomenon uses a high power density energy storage element that provides energy to the load when the lithium battery module cannot continue to provide power due to the concentration polarization phenomenon. Solving the phenomenon can let the battery module continue to provide energy to the load and increase the system's endurance.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 11 第二章 電池介紹與建模 12 第三章 基於主從式電池管理系統之主動平衡策略 20 第四章 具電池功率平滑化策略之電池管理系統 65 第五章 具緩解鋰電池模組濃差極化現象之控制策略 112 第六章 結論與未來展望 138 6.1 結論 138 6.2 未來展望 140 參考文獻 141

    [1] “2021 United Nations Climate Change Conference the Glasgow Climate Pact, ” [Online]. Available: https://ukcop26.org/the-glasgow-climate-pact/.
    [2] Y.-L. Lee, C.-H. Lin, K.-J. Pai, and Y.-L. Lin, “Modular design and validation for battery management systems based on dual-concentration architectures,” Journal of Energy Storage, vol. 53, pp. 1–13, Sep. 2022.
    [3] Y.-L. Lee, C.-H. Lin, S.-A. Farooqui, H.-D. Liu, and J. Ahmad, “Validation of a Balancing Model Based on Master-Slave Battery Management System Architecture,” Electric Power Systems Research, vol. 214, no. Part A, pp. 1–14, Jan. 2023.
    [4] Y.-L. Lee, C.-H. Lin, C.-H. Chang, H.-D. Liu, C.-C. Chen, “A Novel Hybrid Energy Storage System with an Adaptive Digital Filter−Based Energy Management Strategy for Electric Vehicles,” IEEE Transactions on Transportation Electrification, Oct. 2023.
    [5] Y.-L. Lee, C.-H. Lin, K.-J. Pai, C.-J. Chen, “Control strategy and verification of reducing battery polarization characteristics to improve unmanned aerial vehicles endurance,” Journal of Power Source, vol. 591, Jan. 2024
    [6] A. Seaman, T.-S. Dao, J. Mcphee, “A survey of mathematics-based equivalentcircuit and electrochemical battery models for hybrid and electric vehicle simulation,” Journal of Power Sources, vol. 256, 410-423.
    [7] F. Sun, X. Rui, “A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles,” Journal of Power Sources, 274(2015) 582-594.
    [8] J. Liu, Z. Chen, “Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model,” IEEE Access, 7(2019) 39474-39484.
    [9] L. Gregory PLETT, “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification,” Journal of Power Sources, 134(2004) 262-276.
    [10] Y. Chiang, W. Sean, J. Ke, “Online estimation of internal resistance and opencircuit voltage of lithium-ion batteries in electric vehicles, Journal of Power Sources, 196(2011) 3921-3932.
    [11] Y. Hu, S. Yurkovich, “Linear parameter varying battery model identification using subspace methods,” Journal of Power Sources, 196(2011) 2913-2923.
    [12] M. Hu, Y. Li, S. Li, C. Fu, D. Qin, Z. Li, “Lithium-ion battery modeling and parameter identification based on fractional theory,” Elsevier Energy, 165(2018) 153-163.
    [13] Y. Jiang, C. Zhang, W. Zhang, W. Shi, Q. Liu, “Modeling charge polarization voltage for large lithium-ion batteries in electric vehicles,” Journal of Industrial Engineering and Management, 6(2013) 686-697.
    [14] O. Tremblay, L.-A. Dessaint, “Experimental Validation of a Battery Dynamic Model for EV Applications,” World Electric Vehicle Journal, 3(2009) 289-298.
    [15] J.-W. Cen, F.-M. Jiang, “Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning integrated system,” Energy for Sustainable Development 2020; 57; 141-148.
    [16] J.-W. Cen, Z.-B. Li, F.-M. Jiang, “Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management,” Energy for Sustainable Development 2018; 45; 88-95.
    [17] Y.-F. Wang, J.-T. Wu, “ Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles,” Energy Conversion and Management 2020;207:112569.
    [18] H.-G. B., Rui C., A. Setas L. , “Battery energy storage systems as a way to integrate renewable energy in small isolated power systems,” Energy for Sustainable Development 2018; 43; 90-99.
    [19] Manenti A, Abba A, Merati A, Savaresi SM, Geraci A, “A New BMS Architecture Based on Cell Redundancy,” IEEE Transactions on Industrial Electronics 2011;58:4314–22. https://doi.org/10.1109/TIE.2010.2095398
    [20] M.-Y. Kim, C.-H. Kim, J.-H. Kim, G.-W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics 2014;61:3989–99. https://doi.org/10.1109/TIE.2013.2288195
    [21] Y. Ye, KWE Cheng, Y.C. Fong, X. Xue, J. Lin, “Topology, Modeling, and Design of Switched-Capacitor-Based Cell Balancing Systems and Their Balancing Exploration,” IEEE Transactions on Power Electronics 2017;32:4444–54. https://doi.org/10.1109/TPEL.2016.2584925
    [22] Y. Shang, C. Zhang, N. Cui, J.M. Guerrero, “A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter,” IEEE Transactions on Power Electronics 2015;30:3731–47. https://doi.org/10.1109/TPEL.2014.2345672
    [23] K.-M. Lee, Y.-C. Chung, C.-H. Sung, B. Kang, “Active Cell Balancing of Li-Ion Batteries Using LC Series Resonant Circuit,” IEEE Transactions on Industrial Electronics 2015;62:5491–501. https://doi.org/10.1109/TIE.2015.2408573
    [24] S.-H. Park, K.-B. Park, H.-S. Kim, G.-W. Moon, and M.-J. Youn, “Single-Magnetic Cell-to-Cell Charge Equalization Converter With Reduced Number of Transformer Windings,” IEEE Transactions on Power Electronics 2012;27:2900-2911. https://doi.org/10.1109/TPEL.2011.2178040
    [25] Chamyut Kamjanapiboon, Kamon Jirasereeamornkul, Veerapol Monyakul, “High Efficiency Battery Management System for Serially Connected Battery String,” IEEE International Symposium on Industrial Electronics 2009;1504-1509. https://doi.org/10.1109/ISIE.2009.5214247
    [26] A. Xu, S. Xie, X. Liu, “Dynamic Voltage Equalization for Series-Connected Ultracapacitors in EV/HEV Applications,” IEEE Transactions on Vehicular Technology 2009; 58:3981-3987. https://doi.org/10.1109/TVT.2009.2028148
    [27] Nasser H. Kutkut, Herman L. N. Wiegman, Deepak M. Divan, Donald W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Trasactions on Industry Applications 1999;35:28-35. https://doi.org/10.1109/28.740842
    [28] M.-Y. Kim, J.-W. Kim, C.-H. Kim, S.-Y. Cho, G.-W. Moon, “Automatic Charge Equalization Circuit Based on Regulated Voltage Source for Series Connected Lithium-ion Batteries,” 8th Internation Conference on Power Electrionics 2011;2248-2255. https://doi.org/10.1109/ICPE.2011.5944448
    [29] Matthias Preindl, “A Battery Balancing Auxiliary Power Module With Predictive Control for Electrified Transportation,” IEEE Transactions on Industrial Electronics 2018;65:6552-6559. https://doi.org/10.1109/TIE.2017.2682030
    [30] Einhorn M, Guertlschmid W, Blochberger T, Kumpusch R, Permann R, Conte F-V, Kral C, Fleig J, “A current equlization method for serially connected battery cells using a single power converter for each cell,” IEEE Trasactions on Vehicular Technology 2011;60:4227–4237. https://doi.org/10.1109/TVT.2011.2168988
    [31] P.-S.Li, C.-C.Mi, M. Zhang, “A high-efficiency active battery-balancing circuit using multiwinding transformer,” IEEE Trasactions on Industry Applications 2013;49:198–207. https://doi.org/10.1109/TIA.2012.2229455
    [32] Abeywardana D-B-W., Manaz M-A-M, Mediwaththe M-G-C-P, Liyanage K-M, “ Improved shared transformer cell balancing of Li-ion batteries,” Proc. IEEE 7th Int. Conf. Ind. Inf. Syst. 2012;1–6. https://doi.org/10.1109/ICIInfS.2012.6304835
    [33] C.-S. Lim, K.-J.Lee, N.-J.Ku, D.-S. Hyun, R.-Y. Kim, “A modularized equalization method based on a magnetizing energy for series-connected lithium-ion battery string,” IEEE Transactions on Power Electronics 2014;29:1791–1799. https://doi.org/10.1109/TPEL.2013.2270000
    [34] Stuart T-A, Zhu W, “Fast equalization for large lithium ion batteries,” IEEE Aerosp. Electron. Syst. Mag. 2009;24:27–31. https://doi.org/10.1109/OCEANS.2008.5152122
    [35] Yarlagadda S, Hartley TT, Husain I, “A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Trasactions on Industry Applications 2013;49:2720–9. https://doi.org/10.1109/TIA.2013.2264794
    [36] Morstyn T, Momayyezan M, Hredzak B, Agelidis VG, “Distributed Control for State-of-Charge Balancing Between the Modules of a Reconfigurable Battery Energy Storage System,” IEEE Transactions on Power Electronics 2016;31:7986–95. https://doi.org/10.1109/TPEL.2015.2513777
    [37] Momayyezan M, Hredzak B, Agelidis VG, “Integrated Reconfigurable Converter Topology for High-Voltage Battery Systems,” IEEE Transactions on Power Electronics 2016;31:1968–79. https://doi.org/10.1109/TPEL.2015.2440441
    [38] Y.Shang, B.Xia, C.Zhang, N.Cui, J.Yang, C. Mi, “A Modularization Method for Battery Equalizers Using Multiwinding Transformers,” IEEE Trasactions on Vehicular Technology 2017;66:8710–22. https://doi.org/10.1109/TVT.2017.2702065
    [39] H. Nazi, E. Babaei, “A Modularized Bidirectional Charge Equalizer for Series-Connected Cell Strings,” IEEE Transactions on Industrial Electronics 2021;68:6739–49. https://doi.org/10.1109/TIE.2020.3003661
    [40] S.-W. Lee, K.-M. Lee, Y.-G. Choi, B. Kang, “Modularized Design of Active Charge Equalizer for Li-Ion Battery Pack,” IEEE Transactions on Industrial Electronics 2018;65:8697–706. https://doi.org/10.1109/TIE.2018.2813997
    [41] E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, “Energy Storage Devices for Future Hybrid Electric Vehicles,” Journal of Power Sources, vol. 168, pp. 2-11, 2007.
    [42] J. P. Zheng, T. R. Jow and M. S. Ding, “Hybrid power sources for pulsed current applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 1, pp. 288- 292, Jan 2001, doi: 10.1109/7.913688
    [43] T. Ma, H. Yang, L. Lu, “Development of hybrid battery– supercapacitor energy storage for remote area renewable energy systems,” Elsevier Applied Energy, vol. 153, pp. 56- 62, Sep. 2015, doi: 10.1016/j.apenergy.2014.12.008
    [44] N. Omar et al., “Power and life enhancement of batteryelectrical double layer capacitor for hybrid electric and chargedepleting plug-in vehicle applications,” Elsevier Electrochimica Acta, vol. 55, pp. 7524-7531, Oct. 2010, doi: 10.1016/j.electacta.2010.03.039
    [45] B. Wang, J. Xu, D. Xu, Z. Yan, “Implementation of an estimator-based adaptive sliding mode control strategy for a boost converter based battery/supercapacitor hybrid energy storage system in electric vehicles,” Elsevier Energy Conversion and Management, vol. 151, pp. 562-572, Nov. 2017, doi: 10.1016/j.enconman.2017.09.007
    [46] A. Kuperman, I. Aharon, S. Malki and A. Kara, “Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 806-815, Feb. 2013, doi: 10.1109/TPEL.2012.2203361
    [47] B. Wang, J. Xu, R. Wai and B. Cao, “Adaptive Sliding-Mode With Hysteresis Control Strategy for Simple Multimode Hybrid Energy Storage System in Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1404-1414, Feb., 2017, doi: 10.1109/TIE.2016.2618778
    [48] S. Dusmez, A. Hasanzadeh and A. Khaligh, “Comparative Analysis of Bidirectional Three-Level DC–DC Converter for Automotive Applications,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3305-3315, May 2015, doi: 10.1109/TIE.2014.2336605
    [49] Z. Song et al., “Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach,” Elsevier Applied Energy, vol.139, pp. 151-162, Feb. 2015, doi: 10.1016/j.apenergy.2014.11.020
    [50] H. He, R. Xiong, K. Zhao, Z. Liu, “Energy management strategy research on a hybrid power system by hardware-inloop experiments,” Elsevier Applied Energy, vol. 112, pp. 1311-1317, Dec. 2013, doi: 10.1016/j.apenergy.2012.12.029
    [51] Q. Zhang and G. Li, “Experimental Study on a Semi-Active Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicle Application,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 1014-1021, Jan. 2020, doi: 10.1109/TPEL.2019.2912425
    [52] Y. Eren, O. Erdinc, H. Gorgun, M. Uzunoglu, B. Vural, “A fuzzy logic based supervisory controller for an FC/UC hybrid vehicular power system,” Elsevier International Journal of Hydrogen Energy, vol. 34, pp. 8681-8694, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.033
    [53] H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, “Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle”, International Journal of Hydrogen Energy, vol. 42, pp. 8857-8869, Mar. 2017, doi: 10.1016/j.ijhydene.2016.09.190
    [54] N. D. Ranasinghe and W. A. Don Lakitha Gunawardana, “Development of gasoline-electric hybrid propulsion surveillance and reconnaissance VTOL UAV,” Proc. IEEE Int. Conf. Robot. Autom. Artif. Intell.,(2021) 63-68.
    [55] He Cheng, Jia, Y., Ma, D., “Optimization and Analysis of Hybrid Electric System for Distributed Propulsion Tilt-Wing UAV,” IEEE Access, 8(2020) 224654–224667.
    [56] F.-S. Wu, Z.-Y. Wu, X. Jiang, H. Qian, “Rule-based Transient Power Control Strategy for Hybrid System in Unmanned Aerial Vehicle,” 24th International Conference on Electrical Machines and Systems,(202) 2425-2429.
    [57] Mohamed S. Elkerdany, Ibrahim M. Safwat, Ahmed Medhat M. Yousse, Mohamed M. Elkhatib, “A Comparative Analysis of Energy Management Strategies for a Fuel-Cell Hybrid Electric System UAV,” IEEE Aerospace Conference,(2022).
    [58] C.-Y. Tian, C.-Y. Tian, S. Quan, P. Li, J. Zhao, “An H2-consumption-minimization-based energy management strategy of hybrid fuel cell/battery power system for UAVs,” IEEE 1st International Power Electronics and Application Symposium,(2021).
    [59] S. Quan, Y.-G. Huangfu, C.-Yang Tian, P. Li, Y.-H. Zhang, Z.Z. Su, “Comparative of Energy Management Strategies for Fuel Cell UAV Based on a New Hybrid Power System Topology,” IEEE Industry Applications Society Annual Meeting,(2022).
    [60] M. S. Elkerdany, I. M. Safwat, A. M. M. Yossef and M. M. Elkhatib, “Hybrid fuel cell/battery intelligent energy management system for UAV,” Proc. 16th Int. Comput. Eng. Conf.,(2020) 88-91.
    [61] R.-C. Ren, J.-B. Wei, H.-Z. Wang, K. Liu, Z.-J. Qin, M.-Z. Cao, “Research on Energy Management Method and Simulation of Hybrid Propulsion VTOL UAV,” IEEE 5th International Electrical and Energy Conference,(2022).
    [62] J. Kim, S. Baek, Y. Choi, J. Ahn and H. Cha, “Hydrone: Reconfigurable energy storage for UAV applications,” Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synth.(CODES+ISSS),(2020) 3686-3697.
    [63] J. Fang, Y. Tang, H. Li and X. Li, “A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators,” IEEE Transactions on Power Electronics, 33(2018) 2820-2824.
    [64] Battery University, “When Was the Battery Invented?,” BU-101, 2019-06-14. [Online], Available: https://reurl.cc/kZrZ4K
    [65] Republic service, “Battery Recycling is Important for Environmental Health,” January 20, 2020. [Online], Available: https://reurl.cc/VEN5pA
    [66] Infineon, “CoolMOS™ benefits in both hard and soft switching SMPS topologies,” June 2016.
    [67] D. S. Wijeratne, and G. Moschopoulos, “A ZVS-PWM Full-Bridge Converter With Reduced Conduction Losses,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3501-3513, July 2014.
    [68] B.R. Lin, H.K. Chiang, K.C. Chen, D. Wang, “Analysis, design and implementation of an active clamp flyback converter, 2005 Int. Conf. Power Electron. Drives Syst. 1(2005) 424–429.
    [69] 李宥霖,“具雙向返馳轉換器之主動式電池平衡系統控制策略”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零八年七月。
    [70] 陳君正,“應用於Gogoro電動機車之混合儲能系統研製”,國立臺灣科技大學電機工程系碩士學位論文,民國一百一十一年七月
    [71] Ned Mohan, Tore M. Undeland and William P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd Edition, John Wiley & Sons, (1995).
    [72] C.-M. Tseng, C.-K. Chau, Khaled Elbassioni and Majid Khonji, “Flight Tour Planning with Recharging Optimization for Battery-operated Autonomous Drones,” Engineering, Environmental Science, vol. 1, 2017.

    無法下載圖示 全文公開日期 2029/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE