簡易檢索 / 詳目顯示

研究生: 沈明逸
Ming-Yi Shen
論文名稱: 碳黑支撐硒化釕氧還原觸媒
Carbon Supported RuSex Catalyst for Oxygen Reduction Reaction
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
周賢鎧
Shyankay Jou
洪偉修
Wei-Hsiu Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 134
中文關鍵詞: 硒化釕觸媒硒修飾釕觸媒氧還原反應電化學觸媒甲醇容忍陰極觸媒
外文關鍵詞: Selenium-modified ruthenium catalyst, Oxygen-reduction reaction, Methanol-tolerance cathode catalyst
相關次數: 點閱:211下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究釕硫屬化合物(Ruthenium Chalcogenides)中的碳黑支撐硒化釕(Ruthenium Selenide)觸媒,藉由控制反應物進料的硒/釕原子比例及氫氣熱處理條件,可調整硒化釕(RuSex)觸媒的硒/釕原子比例與粒徑,使用EDX進行觸媒的元素分析、XRD判斷觸媒的晶體結構及估計觸媒晶粒徑、TEM的明視野影像與選區電子繞射,可取得高倍率的影像以及局部的晶體結構資訊。
    將碳黑(Vulcan XC-72R)支撐二硒化釕(RuSe2)觸媒於不同氫氣退火溫度下進行熱處理;得知經400oC~500oC處理的觸媒具有二硒化釕為主的結構,而經600oC處理的觸媒具有二硒化釕與釕金屬的混合結構,兩者皆表現出良好的氧還原催化活性,遠高於碳黑支撐釕金屬前驅物(Ru/Vulcan)。過高的處理溫度如700oC以上,則會使硒化釕裂解並伴隨著觸媒團聚,導致氧還原催化活性下降。
    我們也製備固定氫退火處理溫度400oC,但含不同硒/釕原子比例的硒化釕(RuSex)觸媒,觸媒晶體為主要為釕金屬的RuSe0.35及RuSe0.86,量測計算而得的動力電流值並無太大的差異,僅略高於碳黑支撐釕金屬前驅物。觸媒晶體為二硒化釕與釕金屬混合結構的RuSe1.47與硒化釕為主的RuSe1.86,氧還原反應催化活性明顯上升,但二硒化釕為主的RuSe2.04卻稍有活性下降的現象。此外隨著硒/釕原子比例的上升,觸媒粒徑也同時增加。
    碳黑支撐釕金屬前驅物、不同氫退火溫度處理的碳黑支撐二硒化釕(RuSe2)觸媒、以及經400oC氫退火處理的不同硒/釕原子比例的碳黑支撐硒化釕(RuSex)觸媒,經測試後皆證實對於甲醇皆具有極佳的容忍性,此應為用於DMFC之氧還原反應(ORR)觸媒重要性質之一。


    We study carbon black supported ruthenium selenide of ruthenium chalcogenide catalysts, which has been synthesized via controlling the Se/Ru atomic ratio of reactants and the thermal conditions of hydrogen reduction to adjust the Se/Ru ratio and the particle size of the RuSex catalyst. Elemental analysis of the as-prepared RuSex has been done by energy dispersive spectroscopy (EDS), the crystal structure and crystallite size have been analyzed by X-ray diffraction (XRD), the resolution image and the local structural information have been revealed by transmission electron microscopy (TEM).
    The Vulcan supported RuSe2 has been annealed in hydrogen at various temperatures, and the annealing has changed its structure and composition significantly. Among the annealed samples, the 400-600C annealed RuSe2 samples exhibit excellent catalytic activity toward oxygen reduction reaction (ORR), higher than that of Vulcan supported Ru. The samples annealed at 400 and 500C display a structure of RuSe2 features, while the sample annealed at 600C displays a mixed structures of Ru and RuSe2. However, the ORR activity decreases when the annealing temperature is higher than 700C since RuSe2 decomposes and coalescences into larger particles.
    We also prepare RuSex catalysts which were annealed at 400C in hydrogen and with various Se/Ru atomic ratios. Among them, the kinetic currents of RuSe0.35 and RuSe0.86 of ruthenium metal structure are very similar, their magnitudes are not much different from that of Vulcan- supported ruthenium metal. The catalyst of RuSe1.47 and RuSe1.86 displaying ruthenium diselenide structure apparently exhibit higher activities. On further increasing the Se/Ru ratio to RuSe2.04, the catalytic activity decreases again.
    The RuSe2 catalysts annealed at various temperatures, the RuSex catalysts annealed at 400C with various Se/Ru atomic ratio, and the Ru metal precursor all show respectable methanol tolerance. The methanol tolerance should be one of the important properties for DMFC ORR catalyst.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VIII 圖目錄 XII 表目錄 XVIII 第一章 緒論 1 第二章 理論基礎與文獻回顧 3 2.1 燃料電池簡介 3 2.2 直接甲醇燃料電池(DMFC) 7 2.2.1 DMFC陽極觸媒材料 9 2.2.2 DMFC電解質材料 11 2.2.3 DMFC陰極電化學反應與材料 13 2.2.3.1氧還原反應 13 2.2.3.2氧還原反應觸媒 14 2.3 研究動機 20 第三章 實驗方法與分析儀器 21 3.1 實驗藥品 21 3.2 儀器設備 23 3.3 實驗方法 24 3.3.1 碳黑(Vulcan XC-72R)之前處理 24 3.3.2 有機溶劑之前處理 25 3.3.3 實驗氣體之純化 25 3.3.4 陰極觸媒製備 26 3.3.4.1 碳黑支撐釕金屬前驅物粉末的製備 27 3.3.4.2 碳黑支撐硒化釕觸媒粉末的製備 29 3.4 材料鑑定與分析 30 3.4.1 觸媒分析流程 30 3.4.2 X光繞射晶相分析(XRD) 31 3.4.3 場發射穿透式電子顯微鏡分析(FEG-TEM) 32 3.4.4 X光能量散佈儀元素組成分析(EDX) 32 3.4.5 電化學特性測試 33 第四章 實驗結果與討論 36 4.1 X光能量散佈儀元素組成分析(EDX) 36 4.2 X光繞射晶相分析(XRD) 39 4.2.1 碳黑支撐釕金屬前驅物之XRD繞射圖譜 39 4.2.2 不同氫退火溫度處理的碳黑支撐二硒化釕(RuSe2)觸媒之XRD繞射圖譜 41 4.2.3 400oC氫退火處理的不同硒/釕原子比例的碳黑支撐硒化釕(RuSex)觸媒之XRD繞射圖譜 47 4.3 場發射穿透式電子顯微鏡分析(FEG-TEM) 49 4.3.1 碳黑支撐釕金屬前驅物之TEM電鏡分析 49 4.3.2 不同氫退火溫度處理的碳黑支撐二硒化釕(RuSe2)觸媒之TEM電鏡分析 49 4.3.3 400oC氫退火處理的不同硒/釕原子比例的碳黑支撐硒化釕(RuSex)觸媒之TEM電鏡分析 66 4.4 循環伏安分析(CV) 75 4.4.1 碳黑支撐釕金屬前驅物之CV圖 75 4.4.2 不同氫退火溫度處理的碳黑支撐二硒化釕(RuSe2)觸媒之CV圖 76 4.4.3 400oC氫退火處理的不同硒/釕原子比例的碳黑支撐硒化釕(RuSex)觸媒之CV圖 78 4.5 氧還原反應之線性掃描伏安分析(LSV) 80 4.5.1 碳黑支撐釕金屬前驅物之氧還原LSV圖 80 4.5.2 不同氫退火溫度處理的碳黑支撐二硒化釕(RuSe2)觸媒之氧還原反應LSV圖與塔弗圖 81 4.5.3 400oC氫退火處理的不同硒/釕原子比例的碳黑支撐硒化釕觸媒(RuSex)之氧還原反應LSV圖與塔弗圖 90 4.6 觸媒甲醇容忍性測試(Methanol Tolerance) 96 第五章 結論 101 參考文獻 104 附錄 110

    1. Thorsten Schultz, Su Zhou, and Kai Sundmacher, Chem. Eng. Technal., 24 (2001) 1223
    2. Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S., “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B, 104 (2000), 3518.
    3. Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W., “Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation“, J. Phys. Chem. B, 103 (1999), 6968.
    4. Shukla, A. K.; Raman, R. K.; Choudhury, N. A.; Priolkar, K. R.; Sarode, P. R.; Emura, S.; Kumashiro R., “Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, J. Electroanal. Chem., 563 (2004), 181.
    5. Beden, B.; Kadirgan, F.; Lamy, C.; Leger, J. M., “Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, J. Electroanal. Chem., 127 (1981), 75.
    6. Zhong, C. J.; Maye, M. M., Adv. Mater., “Core-Shell Assembled Nanoparticles as Catalysts”, 13 (2001), 1507.
    7. Hamnett, A., “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catal. Today, 38 (1997), 445.
    8. Carrete, L.; Andreas, Friedrich, K. A.; Stimming, U., “Fuel Cells: Principles, Types, Fuels, and Applications”, Chem. Phys. Chem., 1 (2000), 162.
    9. Ledjeff-Hey, K.; Heinzel, A., “Critical issues and future prospects for solid polymer fuel cells”, J. Power Sources, 61 (1996), 125.
    10. Watanabe, M.; Furuuchi, Y.; Motoo, S., “Electrocatalysis by ad-atoms PART XIII. preparation of ad-electrodes within ad-atoms for methanol, formaldehyde and formic acid fuel cells”, J. Electroanal. Chem., 191 (1985), 367.
    11. Watanabe, M.; Uchida, M.; Motoo, S., “Prepatation of high dispersed Pt+Ru alloy clusters and the activity for electrooxidation of methanol”, J. Electroanal. Chem., 229 (1987), 395.
    12. Chu, D.; Gilman, S., J. Electrochem. Soc., “Methanol Elecfro-oxidation on Unsupported Pt-Ru Alloys at Different Temperatures”, 143 (1996), 1685.
    13. Venkataraman, R.; Kunz, H. R.; Feton, J. M., “Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 150 (2003), A278.
    14. Ley, K. L.; Liu, R.; Pu, C., J. Electrochem. Soc., “Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys”, 144 (1997), 1543.
    15. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Science, “Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts”, 280 (1998),1735.
    16. Arico, A. S.; Poltarzewski, Z.; Kim, H., “Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, J. Power Sources, 55 (1995), 159.
    17. A. K. Shukla, R. K. Raman Annu. Rev. Mater. Res. 33 (2003) 155.
    18. Choi, W. C.; Kim, J. D.; Woo, S. I., “Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry”, Catal. Today, 74 (2002), 235.
    19. L. Colmenares, Z. Jusys, R. J. Behm, J. Phys. Chem. C 111 (2007) 1273.
    20. F. H. B. Lima, W. H. Lizcano-Valbuena, E. Teixeira-Neto, F. C. Nart, E. R. Gonzalez, E. A. Ticianelli, Electrochimica Acta 52 (2006) 385.
    21. W. Yuan, K. Scott, H. Cheng, J. Power Sources 163 (2006) 323.
    22. M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, J. Phys. Chem. C 112 (2008) 2750.
    23. P. Mani, R. Srivastava, P. Strasser, J. Phys. Chem. C 112 (2008) 2770.
    24. B. Anderson, J. Rogues, S. Mukerjee, V. S. Murthi, N. M. Markovic, V. Stamenkovic, J. Phys. Chem. B 109 (2005) 1198.
    25. M. H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. B. Vukmirovic, R. R. Adzic, Langmuir 22 (2006) 10409.
    26. L. Zhang, K. Lee, J. Zhang, Electrochimica Acta 52 (2007) 3088.
    27. X. Li, Q. Huang, Z. Zou, B. Xia, H. Yang, Electrochimica Acta (Article in press).
    28. G. Ramos-Sanchez, H. Yee-Madeira, O. Solorza-Feria, Int. J. Hydrogen Energy (Article in press).
    29. S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J. M. Leger, J. Electroanaly. Chem. 577 (2005) 223.
    30. Y. Lu, R. G. Reddy Electrochimica Acta 52 (2007) 2562.
    31. N. Alonso-Vante, H. Tributsch, O. Solorza-Feria, Electrochimica Acta 40 (1995) 567.
    32. Zhao, H., Schils, H.W., Raub, C.J., J. Less-Common Met. 113 (1985) 75
    33. Moffatt, W.G.: "The Handbook of Binary Phase Diagrams", Schenectady, N.Y.: General Electric Comp. (1988)
    34. Massalski, T.B. (editor-in-chief): "Binary Alloy Phase Diagrams", Second Edition, Vol. 3, T.B. Massalski (editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990)
    35. JCPDS File, 80-0670 Ruthenium Selenide (RuSe2).
    36. V. Le Rhun, N. Alonso-Vante, J. New Mater. Electrochem. Sys. 3 (2000) 333.
    37. O. Solorza-Feria, K. Ellmer, M.Giersig, N. Alonso-Vante, Electrochemica Acta 39 (1994) 1647
    38. N. Alonso-Vante, I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, D. I. Kochubey, Electrochmica Acta 47 (2002) 3807.
    39. H. Cheng, W. Yuan, K. Scott, Electrochimica Acta 52 (2006) 466.
    40. M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg, H. Tributsch, J. Electroanaly. Chem. 517 (2001) 85.
    41. V. I. Zaikovskii, K. S. Nagabhushana, V. V. Kriventsov, K. N. Loponov, S. V. Cherepanova, R. I. Kvon, H. Bonnemann, D. I. Kochubey, E. R. Savinova, J. Phys. Chem. B 110 (2006) 6881.
    42. L. Colmenares, Z. Jusys, R. J. Behm, Langmuir 22 (2006) 10437.
    43. L. Colmenares, Z. Jusys, R. J. Behm, J. Phys. Chem. C 111 (2007) 1273.
    44. I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, D. I. Kochubey, N. Alonso-Vante, J. Phys. Chem. B 106 (2002) 1670.
    45. Stassen, W.N., Heyding, R.D.: Can. J. Chem. 46 (1968) 2159
    46. Zhao, H., Schils, H.W., Raub, C.J.: J. Less-Common Met. 113 (1985) 75
    47. JCPDS File, 06-0663 Ruthenium.
    48. Sebastian Fiechter, Iris Dorbandt, Peter Bogdanoff, Gerald Zehl, Hendrik Schulenburg, Helmut Tribustch, Michael Bron, Jorg Radnik, and Martin Fieber-Erdmann, J.Phys. Chem. C 111 (2007) 477
    49. K. Kinoshita and P.N. Ross, J. Electroanal. Chem. Interfacial Electrochem., 78 (1977) 313
    50. A. L. N. Pinheiro, M. S. Zei, and G. Ertl, Phys. Chem. Chem. Phys., 7. (2005) 1300
    51. D. Michell, D. A. J. Rand, and R. Woods, J. Electroanal. Chem. Interfacial Electrochem., 89 (1978) 11
    52. F. Dasseonoy, W. Vogel, and N. Alonso-Vante, J. Phys. Chem. B 106, (2002) 12152
    53. N. Alonso-Vante. I. V. Malakhov, S. G. Nikitenko, E. R. Savinova, and D. I. Kochubey, Electrochim. Acta. 47 (2002) 3807
    54. Sebastian Fiechter, Iris Dorbandt, Peter Bogdanoff, Gerald Zehl, Hendrik Schulenburg, Helmut Tribustch, Michael Bron, Jorg Radnik, and Martin Fieber-Erdmann, J.Phys. Chem. C 111 (2007) 477
    55. Dianxue Cao, Andrzej Wieckowski, Junji Inukai, and Nicolas Alonso-Vante, J. Electrochem. Soc. 153 (5) (2006) A869
    56. M. Bron, P. Bogdanoff, S. Fiechter, I. Dorbandt, M. Hilgendorff, H. Schulenburg, and H. Tributsh, J. Electroanal. Chem. 500 (2001) 510
    57. T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. A.-Vante, R. J. Behm, J. Electrochem. Soc. 147 (2000) 2620
    58. G. Zehl, P. Bogdanoff, I. Dorbandt, S. Fiechter, K. Wippermann, and C. Hartnig, J. Appl. Electrochem. 37 (2007) 1475
    59. H. Cheng, W. Yuan, and K. Scott, Fuel Cells 07, 1 (2007) 16

    QR CODE