簡易檢索 / 詳目顯示

研究生: 莊盛宇
Sheng-Yu Chuang
論文名稱: 不飽和夯實紅土之土壤波速、剪力強度與模數特性之試驗研究
A Study on Soil Velocity, Shear Strength and Modulus of Unsaturated Compacted Lateritic Soil
指導教授: 林宏達
Horn-Da Lin
口試委員: 王建智
Chien-Chih Wang
林宏達
Horn-Da Lin
李安叡
An-Jui Li
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 142
中文關鍵詞: 土壤波速剪力強度視凝聚力不飽和夯實土壤
外文關鍵詞: Soil Velocity, Shear Strength, Apparent Cohesion, Unsaturated Compacted Soil
相關次數: 點閱:225下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

夯實土壤長期處於不飽和狀態,以傳統飽和土壤力學無法合理解
釋其行為。現地之夯實土壤會受天氣變化,如降雨及日曬等影響,造
成土壤含水量之變化,進而影響其基質吸力、土壤強度及土壤模數等。
本研究進行一系列室內試驗來探討不飽和夯實土壤在不同基質吸力下
土壤波速、土壤強度與模數之關係。試驗項目包含超音波暨彎曲元件
試驗、無圍壓縮搭配小應變試驗及不飽和三軸暨彎曲元件之單階加載
試驗。先根據夯實曲線準備乾側和濕側之土壤試體。進行試驗前再將
試體養護至不同夯實狀態,包括夯實完成時、飽和狀態及飽和後乾化
狀態。
試驗結果顯示,超音波剪力波速三個斷面之量測結果相近。超音
波剪力波速量測距離需大於6cm,且其量測結果與彎曲元件結果較為
一致。在土壤強度部分,乾側土壤經飽和後,強度會明顯下降,並且
在後續乾化過程,強度相對較小於濕側土壤。針對土壤波速與強度進
一步探討後,發現隨基質吸力上升,兩者之增量成一線性相關。本研
II
究也建立了土壤波速推估土壤強度之量化關係式,可提供工程應用參
考。土壤應變相依模數試驗結果顯示,隨基質吸力提升其模數也會跟
著上升,並且在小應變範圍10−5~10−3也可明顯看出模數之劣化情形。
藉由土壤波速帶入波傳公式推得之最大楊氏模數也會隨基質吸力提升
而提升,並且整體趨勢與無圍壓縮試驗結果之趨勢相同。


The traditional saturated soil mechanics cannot explain the behavior of
the compacted soil, which has been in an unsaturated state for a long time.
Also, the water content of the compacted soil on site will be affected by the
weather factors, such as rainfall and sunshine, which will affect its matric
suction, strength, modulus, and so on. This study conducted a series of
laboratory tests. to investigate the relationship among the wave velocity, the
shear strength, and the modulus of the soil in different compacted states under
different matric suction. Laboratory tests include the ultrasonic and bender
element test, the unconfined compression test with small strain measurement,
and the unsaturated triaxial test with bender element. Soil samples were
initially prepared at both the dry side and the wet side of the compaction
curve. Soil samples are then cured to different states before testing including
the as-compacted state, the saturated state, and the dried state after saturation.
Test results show that the ultrasonic shear wave velocities are similar
measured through three different cross sections of the sample. In addition,
the ultrasonic shear wave velocity measurement distance needs to be greater
than 6cm. The result is also in reasonable agreement with the bender element
IV
result. Regarding soil strength behavior, the strength of the dry side soil will
be significantly reduced after saturated, and the strength in the subsequent
drying process is also smaller than that of the wet side soil. Furthermore, a
positive linear correlation was found between the soil wave velocity and the
strength while the matric suction increased. This study established
quantitative formulas for estimating the soil strength by the wave velocity
that can be adopted for engineering applications. The test results of the straindependent
modulus show that as the matric suction increases, its modulus
will also increase, and the modulus deterioration phenomenon could be
clearly seen in the small strain range (10-5~10-3). The maximum Young's
modulus derived from the soil wave velocity using the wave propagation
formula will also increase with the increase of the matric suction. The overall
trend is the same as that of the unconfined compression test results.

論文摘要 ......................................................................................................... I ABSTRACT ................................................................................................. III 誌謝 ............................................................................................................... V 目錄 ............................................................................................................ VII 表目錄 .......................................................................................................... XI 圖目錄 ....................................................................................................... XIII 第一章 緒論 ................................................................................................... 1 1.1 研究目的與動機 ............................................................................. 1 1.2 研究內容與架構 ............................................................................. 2 第二章 文獻回顧........................................................................................... 5 2.1 不飽和夯實土壤性質 ..................................................................... 5 2.1.1 夯實土壤性質 ....................................................................... 5 2.1.2 不飽和夯實土壤之吸力特性與水分特性曲線 .................. 7 2.2 不飽和土壤之剪力強度 ............................................................... 10 2.2.1 延伸莫爾庫倫破壞準則 .................................................... 10 2.2.2 不飽和三軸試驗 ................................................................. 14 VIII 2.2.3 不飽和無圍壓縮試驗......................................................... 16 2.3 不飽和夯實土壤波速特性 ........................................................... 19 2.3.1 土壤之超音波速特性......................................................... 19 2.3.2 彎曲元件與剪力波速特性 ................................................ 22 2.4 土壤之應變相依模數特性 ........................................................... 23 2.4.1 應變相依模數 ..................................................................... 24 2.4.2 小應變模數 ......................................................................... 25 第三章 試驗計畫、設備與方法 ................................................................ 27 3.1 試驗計畫及流程 ........................................................................... 27 3.2 土壤性質與試體準備 ................................................................... 29 3.2.1 土壤基本物理性質試驗 .................................................... 30 3.2.2 修正夯實試驗與靜壓夯實試體製作 ................................ 30 3.2.3 飽和三軸試驗 ..................................................................... 31 3.3 超音波暨彎曲元件試驗 ............................................................... 34 3.3.1 土壤吸力特性與乾濕化模擬 ............................................ 34 3.3.2 超音波與試體均勻性試驗 ................................................ 39 3.3.3 彎曲元件試驗 ..................................................................... 45 3.4 不飽和無圍壓縮搭配小應變量測 ............................................... 48 IX 3.5 不飽和三軸暨彎曲元件試驗 ....................................................... 54 3.5.1 不飽和三軸暨彎曲元件試驗儀器 .................................... 54 3.5.2 不飽和三軸暨彎曲元件單階加載方法 ............................ 61 第四章 試驗結果與探討 ............................................................................ 64 4.1 不飽和夯實土壤性質 ................................................................... 64 4.1.1 不飽和土壤性質試驗結果 ................................................ 64 4.1.2 飽和三軸試驗結果 ............................................................. 69 4.2 土壤超音波速暨彎曲元件試驗 ................................................... 72 4.2.1 土壤超音波速量測結果 .................................................... 72 4.2.2 彎曲元件試驗量測結果 .................................................... 78 4.2.3 超音波與彎曲元件試驗之剪力波速探討 ........................ 80 4.3 不飽和無圍壓縮試驗搭配小應變量測 ....................................... 84 4.3.1 不飽和無圍壓縮強度......................................................... 84 4.3.2 應變相依模數結果 ............................................................. 87 4.4 不飽和三軸暨彎曲元件單階加載試驗結果 ............................... 90 4.5 不同夯實狀態與基質吸力下之土壤波速、視凝聚力與模數特性 ............................................................................................................. 98 4.5.1 夯實完成時與飽和後乾化試體之土壤強度與模數特性 98 X 4.5.2 夯實完成時與飽和後乾化試體之土壤波速與強度關係 .................................................................................................... 102 4.6 以含水量及剪力波速探討試體均向性 ..................................... 108 第五章 結論與建議 .................................................................................. 111 5.1 結論 ............................................................................................. 111 5.2 建議 ............................................................................................. 113

1. 丁楷恩,「不飽和夯實紅土之土壤波速與剪力強度及土壤模數之關
係」,碩士論文,國立台灣科技大學營建工程系,(2018)。
2. 王正君,「乾、濕化路徑與夯實狀態對土壤基質吸力之影響」,
碩士論文,國立台灣科技大學營建工程系,(2008)。
3. 王旭暉,「以基質吸力觀點探討不飽和夯實紅土無圍壓縮強度與視
凝聚力關係」,碩士論文,國立台灣科技大學營建工程系,(2016)。
4. 江宇祥,「不飽和夯實紅土之視凝聚力與剪力強度特性」,碩士論
文,國立台灣科技大學營建工程系,(2014)。
5. 李豪智,「乾濕化路徑下基質吸力對不飽和夯實紅土應變相依土
壤模數之影響」,碩士論文,國立台灣科技大學營建工程研究所,
(2016)。
6. 李家豪,「Apparent Cohesion and Small-Strain Soil Modulus of
Unsaturated Compacted Lateritic Soil」,碩士論文,國立台灣科技大
學營建工程系,(2017)。
7. 李昱成,「以土壤波速與基質吸力探討不飽和夯實紅土視凝聚力與
應變相依模數」,碩士論文,國立台灣科技大學營建工程系,
(2020)。
8. 林郁博,「不飽和夯實紅土波速與力學性質關係之研究」,碩士論
文,國立台灣科技大學營建工程系,(2017)。
9. 周勃翰,「不飽和夯實紅土視凝聚力與吸力特性之試驗探討」,碩
士論文,國立台灣科技大學營建工程系,(2015)。
10. 拱祥生,「降雨對不飽和土壤邊坡穩定性之影響研究」,碩士論
116
文,國立台灣科技大學營建工程研究所,(1999)。
11. 拱祥生,「不飽和紅土基質吸力行為及其在工程之應用」,博士
論文,國立台灣科技大學營建工程研究所,(2011)。
12. 張哲維,「Study of Apparent Cohesion from Unconfined Compression
Test under Unsaturated Soil Concepts」,碩士論文,國立台灣科技大
學營建工程系,(2013)。
13. 張宇翔,「以基質吸力與土壤波速探討不飽和夯實紅土之剪力強度
及模數特性」,碩士論文,國立台灣科技大學營建工程系,(2019)。
14. 廖志穎,「不飽和路基土壤濕化及剪力模數研究」,碩士論文,國
立台灣科技大學營建工程系,(2007)。
15. 劉耀鴻,「運用非破壞性與破壞性試驗檢測脆性材料力學性質」,
碩士論文,國立台灣科技大學營建工程學系(2019)
16. 龔東慶,「考慮台北沉泥質黏土小應變行為之深開挖地表沉陷分
析」,博士論文,國立台灣科技大學營建工程系,(2003)。
17. Atkinson, J. H., Sallfors, G., “Experimental Determination of Soil
Properties”, Proceedings of the 10th ECSMFE, Vol. 3, Florence, pp. 915-
956, (1991).
18. Chan, C. M., “Bender Element Test in Soil Specimens: Identifying the
Shear Wave Arrival Time”, Electronic Journal of Geotechnical
Engineering, 15,pp. 1263-1276,(2010).
19. Croney, D. and J.D. Coleman., “Pore Pressure and Suction in Soils”, In
Proceedings of the Conference on Pore Pressure and Suction in Soils,
Butterworths, London, pp.31-37, (1961).
20. Costa Filho, L. D. M., ”Measurement of axial strains in triaxial tests on
117
London Clay”, Geotechnical Testing Journal, Vol.8, No.1, pp.3-13,
(1985).
21. Cuccovillo, T., “The measurement of local axial strains in triaxial tests
using LVDTs.”, Géotechnique, Vol.47, No.1, pp.167-172, (1997).
22. Dyvik, R., & Madshus, C., “Lab Measurements of Gmax Using Bender
Elements.”, In Advances in the art of testing soils under cyclic conditions,
pp.186-196. ASCE, (1985).
23. Fredlund, D. G., and Morgenstern, N. R., “Stress State Variables for
Unsaturated Soil.” Journal of Geotechnical Engineering, ASCE, GT5,
Vol.103, pp.447-466, (1977).
24. Fredlund, D. G., Morgenstern, N. R., & Widger, R. A., “The shear
strength of unsaturated soils.”, Canadian geotechnical journal, Vol.15,
No.3, pp.313-321, (1978).
25. Fredlund, D. G., Rahardjo, H., & Gan, J. K. M., “Non-linearity of
strength envelope for unsaturated soils.”, Proc. 6th Int. Conf. Expansive
Soils, New Delhi, Vol.1, pp. 49-54, (1986).
26. Fredlund, D. G. and Rahardjo, H., “Soil Mechanics for Unsaturated
Soils.”, John Wiley, New York, (1993).
27. Fredlund, D. G., & Xing, A., “Equations for the soil-water characteristic
curve.”, Canadian geotechnical journal, Vol.31, No.4, pp.521-532,
(1994).
28. Gasparre, A., Hight, D. W., Coop, M. R., & Jardine, R. J., “The
laboratory measurement and interpretation of the small-strain stiffness of
stiff clays.”, Geotechnique 64, No.12, 942–953, (2014).
118
29. Holtz, R. D., & Kovacs, W. D., “An introduction to geotechnical
engineering.”, (1981). 2th edition,Pearson Education.
30. Ho, D. Y. F. and Fredlund, D. G., “A Multistage Triaxial Test for
Unsaturated Soils”, Geotechnical Testing Journal, Vol.5, No.1, pp. 18-
28, (1982).
31. Isah, B. W., Mohamad, H., Harahap, I. S. H., “Measurement of smallstrain
stiffness of soil in a triaxial setup: Review of local
instrumentation”, International Journal of Advanced and Applied
Sciences, pp.15-26, (2018)..
32. Leong, E. C., Yeo, S. H., & Rahardjo, H., “Measurement of wave
velocities and attenuation using an ultrasonic test system”, Canadian
Geotechnical Journal, Vol.41, No.5, pp.844-860, (2004).
33. Lin, H. D., Kung, J. H. S., and Wang, C. C., “Matric Suction and Shear
Modulus of Unsaturated Compacted Lateritic Soil Subjected to Drying
and Werting”, Abstracts of The Sixth Japan-Taiwan Joint Workshop on
Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls,
pp.139-140, July 12-15, 2014, Kitakyushu, Japan, (2014).
34. Lin, H. D., Wang, C. C., and Kung, J. H. S., “Wetting and Drying on
Matric Suction of Compacted Cohesive Soil”, Proceedings, ISOPE-2015,
the 25th International Ocean and Polar Engineering Conference (with
CD-ROM), Vol.2, pp.1069-1075, Kona, Big Island, Hawaii, USA,
(2015).
35. Lin, H. D., Jiang, Y. S., Wang, C. C., & Chen, H. Y., “Assessment of
Apparent Cohesion of Unsaturated Lateritic Soil Using an Unconfined
119
Compression Test.”, Proceedings of Advances in Civil, Environmental,
and Materials Research (ACEM’16), (2016).
36. Lin, H. D. , Wang, C. C., & Wang, Xu-Hui “A simplified method to
estimate the total cohesion of unsaturated soil using an UC test”,
Geomechanice and Engineering Volume 16 Issue6, Pages.599-608,
(2018).
37. Laureano, R. H. ,Eduardo, A. S. , Anand, J. P. , “Stiffness of intermediate
unsaturated soil from simultaneous suction-controlled resonant column
and bender element testing”, Engineering Geology Volume 188, Page
10-28, (2015).
38. Mladen, V. ,Ricardo, D. , “EFFECT OF SOIL PLASTICITY ON
CYCLIC RESPONSE”, Journal of Geotechnical Engineering, Vol.
117,Issue 1(1991).
39. Miller, C. J., Yesiller, N., Yaldo, K., and Merayyan, S., “Impact of Soil
Type and Compaction Conditions on Soil Water Characteristic”, Journal
of Geotechnical and Geoenvironmental Engineering, Vol.128, No.9, pp.
733-742, (2002).
40. Mendoza, C. E., Colmenares, J. E., & Merchan, V. E., “Stiffness of an
unsaturated compacted clayey soil at very small strains.”, Proc, Int.
Symp. on Advanced Experimental Unsaturated Soil Mechanics, pp. 199-
204, (2005).
41. Nakagawa, K., Soga, K., & Mitchell, J. K., “Pulse transmission system
for measuring wave propagation in soils.”, Journal of Geotechnical
Engineering, Vol.122, No.4, pp.302-308, (1996).
120
42. Nyunt, T.T., Leong, E.C. and Rahardjo, H., “Stress-strain behavior and
shear strength of unsaturated residual soil from triaxial tests”,
Conference on Unsaturated Soils: Theory and Practice, Thailand, (2011).
43. Oh, W. T., & Vanapalli, S. K., “The relationship between the elastic and
shear modulus of unsaturated soils.”, Unsaturated soils, proceedings of
the 5th international conference on unsaturated soils (eds E. Alonso and
A. Gens), pp.341-346, (2011).
44. Stephenson, R. W., “Ultrasonic testing for determining dynamic soil
moduli.”, Dynamic Geotechnical Testing, ASTM International, (1978).
45. Senthilmurugan, T., & Ilamparuthi, K., “Study on Compaction
Characteristics and Strength through Ultrasonic Method.”, Advances in
Pavement Engineering, pp.1-12, (2005).
46. Sawangsuriya, A., “Wave Propagation Methods for Determining
Stiffness of Geomaterials.”, Wave Processes in Classical and New Solids,
InTech, (2012).
47. Thu, T. M., Rahardjo, H., & Leong, E. C., “Shear strength and porewater
pressure characteristics during constant water content triaxial
tests.”, Journal of Geotechnical and Geoenvironmental
Engineering, Vol.132, No.3, pp.411-419, (2006).
48. Viggiani, G., & Atkinson, J. H., “Stiffness of fine-grained soil at very
small strains.”, Géotechnique, Vol.45, No.2, pp.249-265, (1995).
49. Vanapalli, S. K., Fredlund, D. G., & Pufahl, D. E., “The relationship
between the soil-water characteristic curve and the unsaturated shear
strength of a compacted glacial till.”, Geotechnical Testing
121
Journal, Vol.19, No.3, pp.259-268, (1996).
50. Wang, C. C., Lin, H. D., Li, A. J. and Ting, K. E., “Assessment of the
Unconfined Compression Strength of Unsaturated Lateritic Soil Using
the UPV”, Geomechanics and Engineering Vol.23, pp. 339-349, (2020)
51. Xiao, H., Lee, F. H., Yao, K., Ho, J., & Liu, Y. “Miniature LVDT setup
for local strain measurement on cement-treated clay specimens”, Journal
Marine Georesources & Geotechnology (2018).
52. Yesiller, N., Inci, G., & Miller, C. J., “Ultrasonic testing for compacted
clayey soils.”, Advances in Unsaturated Geotechnics, pp.54-68, (2000).
53. Yang, S. R., Lin, H. D. Kung, J. H. S. and Liao, J. Y., “Shear Wave
Velocity and Suction of Unsaturated Soil Using Bender Element and
Filter Paper Method”, Journal of GeoEngineering, Vol.3, No.2, pp. 67-
74, (2008)

QR CODE