簡易檢索 / 詳目顯示

研究生: 林祐瑞
Yu-Jui Lin
論文名稱: 不同幾何特徵之螺紋攪拌工具對鋁合金5052摩擦攪拌點銲材料流動的影響
Effect of geometric characteristics of tool with thread on material flow in friction stir spot welding
指導教授: 林原慶
Yuan-ching Lin
口試委員: 雷添壽
Tien-shou Lei
黃佑民
You-min Huang
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 摩擦攪拌點銲製程力量與溫度量測材料流動銲件強度
外文關鍵詞: friction stir spot welding, process force amd temperature measurement, material flow, tensile shear strength
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用不同幾何特徵之螺紋攪拌工具對鋁合金5052進行不同製程參數之FSSW製程與拉剪破壞試驗,同時測量FSSW製程中銲件承受的力量與材料的溫度,藉此了解不同製程參數間材料流動行為的差異,並比較銲件強度及破斷形貌,找出影響FSSW製程中材料流動行為之關鍵因素。
    實驗結果顯示FSSW製程中攪拌工具承受軸向力可分為兩階段,在第一階段中,低轉速下量測的軸向力較高,高轉速下量測的軸向力較低。在第二階段中,各轉速所量測的軸向力皆呈遞減現象。
    分析不同轉速間之差異時,在材料應變相同下,因材料承受工具提供之功率與其流動應力上的差異,使攪拌區在低轉速下不易形成且不明顯,反之,攪拌區在高轉速下容易形成且明顯;在材料溫度則有明顯變動(最大上升約36 %),使熱影響區之材料晶粒粗化,並因螺紋位置不同改變材料塑性流動區域,而影響上下板材溫度分布,工具B(螺紋長度1.0 mm,分布於工具凸銷根部位置(即靠近肩部位置))之銲件溫度量測以上板材最高,工具M、T(螺紋長度皆0.9 mm,分別分布於工具凸銷中段與頂端)之下板材溫度有明顯提升;在材料流動行為則因材料溫度梯度(暫態拘束空間的邊界)與材料參與塑性流動之來源有所差異,進而影響攪拌區擴大趨勢與範圍;低轉速時攪拌區不易往縱向發展擴大,而往橫向發展,高轉速時則反之;在銲件拉剪強度則受工具加工硬化效果、上板薄化問題、熱影響區溫升效應造成晶粒粗化等因素影響,使低轉速之銲件擁有較佳強度,高轉速之銲件強度則較差。


    In this thesis, the effects of different process parameters on material flow with different geometric tools during friction stir spot welding (FSSW) are discussed. The experimental were divided into two parts. In the first, the welding specimens were used to investigate the material flowing behaviors during FSSW, and the strength under tensile tests was compared, Tool speeds range from 450 rpm to 2700 rpm, a plunging rate of 1 mm/s, a plunging depth of 2.8 mm and holding time of 1s, 1.2s, 1.5s, 2s, 3s, 3.6, 4.5s, 6s, 9s, 18s. In the second part, tool force and the material temperature were measured during FSSW.
    Experimental results show that forces was higher in low rotational speed than those in high rotational speed due to the resistance of material, and the temperature of the upper sheet was the highest when using tool B, while an obvious temperature rising of the lower sheet was observed when using tool M、T. Due to the effect of effective thickness on the upper sheet, hardening made by tools and grain coarsening caused by temperature rising, the strength of welds has a great improvement when using tool T under the process parameter with low tool rotational speed during FSSW.

    摘要 I Abstract II 目錄 III 圖索引 VII 表索引 XVI 第一章 序論 1 第二章 文獻回顧 3 2.1 摩擦攪拌點銲簡介 3 2.2 摩擦攪拌點銲接原理 5 2.3 摩擦攪拌銲接製程參數 6 2.3.1 銲接製程參數 6 2.3.2 攪拌工具幾何形貌 8 2.4 摩擦攪拌點銲材料流動研究 12 2.5 FSSW製程溫度與力量分布 17 2.6 FSSW銲件之橫截面區域的定義 18 2.7 銲件強度與拉剪破斷行為 21 第三章 實驗方法與步驟 24 3.1 實驗工具與材料 25 3.1.1 FSSW攪拌工具 25 3.1.2 執行FSSW之板材與夾具 27 3.2 實驗方法 29 3.2.1 FSSW製程 29 3.2.2 FSSW製程中攪拌工具的受力狀態與材料溫度之量測 30 3.3 FSSW銲件分析 33 3.3.1 銲件之銲道觀察與製備 33 3.3.2 銲件之拉剪試驗 33 3.3.3 銲件之破斷形貌觀察 35 第四章 結果與討論 36 4.1 FSSW製程力量量測 36 4.1.1 FSSW製程力量量測之軸向力分析 37 4.1.2 FSSW製程力量量測之扭矩(切線力)分析 41 4.1.3 FSSW製程工具之作功分析 46 4.1.4 FSSW製程參數之功率分析 57 4.2 FSSW製程溫度量測 62 4.2.1 製程參數對板件溫升之影響 63 4.2.2 不同螺紋位置攪拌工具對溫度量測分布之影響 65 4.3 FSSW之材料流動行為 71 4.3.1 製程參數對材料流動的影響 76 4.3.2 螺紋位置對材料流動的影響 80 4.3.3 製程參數對兩板間界面發展之影響 84 4.3.4 螺紋位置對兩板間界面發展之影響 87 4.3.5 FSSW的上板材薄化問題 90 4.4 FSSW之銲件破斷形貌與拉剪強度 92 4.4.1 各銲件於低製程轉速下之破斷行為 92 4.4.2 各銲件於高製程轉速下之破斷行為 96 4.4.3 製程參數與螺紋位置對銲件強度之影響 101 4.4.4 銲件強度與破斷形貌之關係比較 107 第五章 結論 109 參考文獻 112

    1. Tatsuya, S., Gen, M., Yasuaki, N., Kenji, S., “Dissimilar Metal Joining Technologies for Steel Sheet and Aluminum Alloy Sheet in Auto Body”, Nippon Steel Technical Repoet, No. 103, (2013)
    2. Yoshohoko, Kiero, T., Yasunari, T., Tatsuo, K., Shunsuke, M., “Effect of post heat treatment on fatigue behavior of friction stir spot welded Al-Mg-Si alloy”, Welding International, Vol. 26, No. 1, 7-14 (2009).
    3. Uematsu, Y., Tokaji, K., Tozaki, Y., Kurita, T., Murata, S., “Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al–Mg–Si alloy”, International Journal of Fatigue, 30, pp. 1956-1966 (2008).
    4. Mishra, R. S., Ma, Z. Y., “Friction stir welding and processing”, Materials Science and Engineering: R, Vol. R50, pp. 1-78 (2005)
    5. Hinrichs, J. F., Smith, C. B., Orsini, B. F., DeGeorge, R. J., Smale, B. J., ”Friction Stir Welding for the 21st Century Automotive Industry”, Friction Stir Link, Inc. Waukesha, USA.
    6. Deqing, W., Shuhua, L., “Study of friction stir welding of aluminum”, Journal of Materials Science, Vol. 39, pp. 1689-1693 (2004).
    7. Thomas, W. M., Nicholas, E. D., “Friction stir welding for the transportation industries”, Materials and Design, Vol. 18, No. 4/6, pp. 269-273 (1997).
    8. Xun, L., Shuhuai, L., Jun, N., “Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel”, Materials and Design, Vol. 59, pp. 50-62 (2014).
    9. Zhang, Z., Yang, X., Zhang, J., Zhou, g., Xu, X., Zou, B., “ Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy”, Materials and Design, Vol. 32, pp. 4461-4470 (2011).
    10. Farias, A., Batalha, G. F., Prados, E. F., Magnabosco, R., Delijaicov, S., “Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V”, Wear, Vol 302, pp. 1327-1333(2013)

    11. Kulekci, K., M., Esme1, U., Er, O., “Experimental comparison of resistance spot welding and friction stir spot welding processes for the en aw 5005 aluminum alloy”, ISSN, Vol 395, pp. 1580-2949(2011)
    12. Badarinarayan, H., Yang, Q. and Zhu, S., “Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy”, International Journal of Machine Tools & Manufacture, 49, pp. 142-148 (2009).
    13. Bozzi, S., Helbert-Ettera, A. L., Baudin, T., Klosek, V., Kerbiguet, J. G. and Criqui, B., “Influence of FSSW parameters on fracture mechanisms of 5182 aluminum welds”, Journal of Materials Processing Technology , 210, pp. 1429-1435 (2010).
    14. Fujimoto, M., Watanabe, D., Abe, N., Yutaka, S. S. and Kokawa, H., “Effects of process time and thread on tensile shear strength of Al alloy lap joint produced by friction stir spot welding”, Welding International., Vol. 24, No.3, March, pp. 169-175 (2010).
    15. Lathabai, S., Painter, M. J., Cantin, G. M. D. and Tyagi, V. K., “Friction spot joining of an extruded Al–Mg–Si alloy”, Scripta Materialia, 55, pp. 899-902 (2006).
    16. Tozaki, Y., Uematsub, Y. and Tokaji, K., “Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys”, International Journal of Machine Tools & Manufacture, 47, pp. 2230-2236 (2007)
    17. Yin, Y. H., Sun, N, North, T. H. and Hu S. S., “Hook formation and mechanical properties in AZ31 friction stir spot welds”, Journal of Materials Processing Technology, 210, pp. 2062-2070 (2010).
    18. Badarinarayan, H., Shi, Y., Li, X. and Okamoto, K., “Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets”, International Journal of Machine Tools & Manufacture, 49, pp. 814-823 (2009).
    19. Sung-Ook, Y., Myoung-Soo, K., Yong-Jai, K., Sung-Tae, H., Dong-Hwan, P., “Influences of tool plunge speed and tool plunge depth on friction spot joining of AA5454-O aluminum alloy plates with different thicknesses”, Trans. Nonferrous Met. Soc. China, 22, pp. 629-633 (2012)
    20. Yuan, W., Mishra, R., Webb, S. S., Chen, Y. L, Carlson, B., Herling, D. R. and Grant, G. J., “Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds”, Journal of Materials Processing Technology, 211, pp. 972-977 (2011).
    21. Tozaki, Y., Uematsu, Y. and Tokaji, K., “A newly developed tool without probe for friction stir spot welding and its performance”, Journal of Materials Processing Technology, 210, pp. 844-851 (2010).
    22. Chowdhury, S. M., Chen, D. L., Bhole, S. D., Caob, X., “Tensile properties of a friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pitch”, Materials Science and Engineering A, 527, pp. 6064-6075 (2010).
    23. Fujimoto, M., Koga, S., Abe, N., Sato, S. Y. and Kokawa, H., “Analysis of plastic flow of the Al alloy joint produced by friction stir spot welding”, Welding International, Vol. 23, No. 8, 589-596 (2009).
    24. Yang, Q., Mironov, S., Sato, Y. S. and Okamoto, K., “Material flow during friction stir spot welding”, Materials Science and Engineering A, 527, pp. 4389-4398 (2010)
    25. Yin, Y. H., Ikuta, A. and North, T. H., “Microstructural features and mechanical properties of AM60 and AZ31 friction stir spot weld”, Materials and Design, 31, pp. 4764-4776 (2010).
    26. 劉如真,「鋁合金A6061-T6摩擦攪拌點銲接合機構之研究」,博士論文,台北 (2012)。
    27. Arul, S. G., Miller, S. F., Kruger, G. H., Pan, T. Y., Mallick, P. K. and Shih, A. J., “Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy”, Science and Technology of Welding and Joining, Vol. 13, No. 7, pp. 629-937 (2008).
    28. Gerlich, A., Su, P., Yamamoto, M., Tom, H., “Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy”, J Mater Sci, 42, pp. 5589-5601 (2007)
    29. Merzoug, M., Mazari, M., Berrahal, L. and Imad, A., “Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys”, Materials and Design, 31, pp. 3023-3028 (2010).

    30. Tozaki, Y., Uematsu, Y. and Tokaji, K., “Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys”, Fatigue and Fracture Engineering Materials and Structures, 30 , pp. 143-148 (2007).
    31. Kawazoe, M., Shibata, T., Mukai, T., Higash, K., “Elevated temperature mechanical properties of a 5056 Al-Mg alloy processed by equal-channel-angular extrusion”, Scripta Materialia, Vol. 36, No. 6, pp. 699-705 (1997)

    無法下載圖示 全文公開日期 2019/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE