簡易檢索 / 詳目顯示

研究生: 陳俊男
Jiun-Nan Chen
論文名稱: 摩擦攪拌點銲之攪拌工具螺紋位置與製程參數對材料流動行為研究
Effects of threaded tools and process parameters on material flow during friction stir spot welding
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 邱源成
none
李榮宗
none
敖仲寧
none
林派臣
none
潘永寧
none
雷添壽
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 152
中文關鍵詞: 摩擦攪拌點銲鋁合金材料流動製程參數
外文關鍵詞: friction stir spot welding, aluminum alloy, material flow, process parameter
相關次數: 點閱:231下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摩擦攪拌點銲為近年來新興的固相點銲接合製程,經高速旋轉攪拌工具與銲件產生擠鍛與摩擦攪拌,使材料劇烈塑性流動而達接合之目的。因熱機製程的特性,使製程參數與攪拌工具幾何交互影響複雜,由製程參數所產生的銲件溫度變化及攪拌工具幾何在銲件內部所產生的壓力差同時影響材料流動行為,造成銲件接合形貌與接合強度差異。本研究改變攪拌工具螺紋幾何位置,經由材料吸入點與吸放點之變化及搭配相關製程參數進行鋁合金板件摩擦攪拌點銲接合製程之材料流動演化、銲接力量、製程輸入功與功率、銲件溫度及拉剪強度等行為探討,並透過適當熱源分配以ANSYS模擬分析銲件溫度場分佈情形。
    研究結果顯示,提高攪拌工具轉速與停留時間有效提升製程輸入功與銲件溫度,降低銲接扭矩與材料流動阻抗。此外,攪拌工具螺紋位置的變化對銲件區域溫度影響不明顯,銲件最高溫度皆出現於上板量測位置,亦即臨近工具肩部區域,而溫度場模擬亦呈現相似溫度分佈。材料流動行為中,當達特定擠入深度,攪拌工具的擠入造成下板向上穿刺進入上板,並受螺紋幾何位置影響而顯現不同穿刺程度,而板件介面在銲件內部所形成的壓力梯度與攪拌工具轉速有助於此穿刺行為,促使上下板材之預混。當進入停留階段,攪拌工具螺紋兩端形成吸入點低壓區與釋放點高壓區,材料經吸入點進入螺紋區段後,受螺紋軸向輸送而在釋放點以輻射狀釋出形成攪拌區,並且攪拌區的成長過程推擠板件介面,造成接合介面形貌與接合強度產生差異,其中螺紋位置位於束桿前端之攪拌工具(T-tool)之銲件上板薄化行為有效被抑制,進而達到最佳銲件接合強度。此外,平均而言,利用900 rpm、9 s及逆時針旋轉接合之銲件具有最佳的接合強度,顯示製程參數同樣對銲件的接合性能造成影響。


    Recently, severe material flow is caused to obtain successful joints by an innovative joining process, called friction stir spot welding (FSSW). Because of its thermomechanical characteristic, the interaction between process parameters and tool geometry makes the process complicated and leads to temperature and pressure difference in welds, resulting in variation of material flow and joint strength of welds. In this study, aluminum alloy sheets were joined by the FSSW process using various threaded tools. The influences of tool geometry and process parameters on material flow evolution, welding force, work, power, weld temperature and joint strength during FSSW were analyzed. In addition, numerical simulation of weld temperature was also discussed. The results indicated that rotational speed and dwell time increase process work and weld temperature, lowering weld torque and material flow resistance. Additionally, threaded locations had little effect on weld temperature in local regions. The highest temperature was shown in the upper sheet region, which was nearest to the shoulder. During tool plunging, the lower sheet penetrated into the upper sheet. A sheet interface and rotational speed was beneficial for promoting the penetration behavior. In a dwell period, sink and source of material were formed at the ends of threads. Material flowed into threaded sections via material sink, following moving forward to material source to form a stir zone (SZ). The growth of SZ squeezed the sheet interface, resulting in the variations of weld morphology and joint strength. The reduction in upper sheet thickness was suppressed in the T-tool welds, thus exhibiting superior joint strength. In addition, the welds joined by tools with 900 rpm, 9 s and counterclockwise rotation showed superior joint strength.

    摘要…… I Abstract. II 誌謝…… III 表索引… VII 圖索引… VIII 第一章 緒論 1 1-1 研究動機與目的 2 1-2 論文架構與研究模型 3 第二章 文獻回顧 4 2-1 接合製程分類 4 2-2 摩擦攪拌銲接簡介 5 2-3 摩擦攪拌點銲 6 2-3-1 製程發展簡介 6 2-3-2 製程原理 8 2-3-3 銲件顯微組織 8 2-3-4 摩擦攪拌點銲相關研究 9 2-3-5 銲件接合機械性質與破壞行為 17 2-4 鋁及鋁合金概述 20 2-5 銲件之溫度模擬分析 21 第三章 材料流動與溫度模擬建構 27 3-1 材料流動機構假設 27 3-2 溫度場模型建構與模擬分析 30 第四章 實驗方法 37 4-1 試片製備 37 4-2 攪拌工具設計 37 4-3 摩擦攪拌點銲設備與治具 38 4-4 實驗步驟 39 4-4-1 試片前處理 39 4-4-2 摩擦攪拌點銲製程 39 4-4-3 銲件材料流場與顯微結構觀測 40 4-4-4 銲件微硬度試驗 40 4-4-5 銲件拉剪強度試驗 40 第五章 實驗結果與討論 46 5-1 銲件攪拌區顯微組織觀測 46 5-2 銲件硬度分佈測量 48 5-3 銲件材料流動行為分析 49 5-3-1 擠入階段之材料流動演化 49 5-3-2 停留階段之攪拌工具螺紋位置效應 53 5-3-3 停留階段之製程參數效應 55 5-3-4 銲件區域體積計算 59 5-4 摩擦攪拌點銲力量測量 61 5-4-1 Tz扭矩 61 5-4-2 Fz軸向力 63 5-4-3 Fx, Fy水平分力 64 5-5 摩擦攪拌點銲製程功率與製程輸入功計算 64 5-5-1 製程功率 65 5-5-2 製程輸入功 66 5-6 銲件溫度測量與溫度場分佈模擬 69 5-7 銲件拉剪強度及破斷面分析 71 5-7-1 銲件拉剪強度比較 71 5-7-2 破斷模式與破斷面分析 72 5-8 銲件材料流動機構 75 第六章 結論與未來發展展望 119 6-1 結論 119 6-2 未來發展與展望 122 附錄 A 133

    [1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, and C. J. Dawes, "Improvements relating to friction welding," 1993.
    [2] R. Sakano, K. Murakami, K. Yamishita, T. Hyoe, M. Fujimoto, M. Inuzuka, U. Nagano, and H. Kashiki, "Development of spot FSW robot system for automobile body members," in 3rd International Symposium of Friction Stir Welding, Kobe, Japan, 2001.
    [3] R. Hancock, "Friction welding of aluminum cuts energy costs by 99%," Welding Journal (Miami, Fla), vol. 83, p. 40, 2004.
    [4] K. Feldman, G. Kohn, and A. Stern. (2010). Friction stir spot welding. Available: http://www.engineers.org.il/_Uploads/3294feldman160107.pdf
    [5] S. R. S. Serope Kalpakjian, Manufacturing engineering and technology, 6 ed.: Pearson, 2010.
    [6] 陳志鵬,銲接學: 全華圖書股份有限公司,2012。
    [7] 周長彬,蘇程裕,蔡丕樁,郭央諶,銲接學: 全華圖書股份有限公司,2008。
    [8] N. Kumar, R. S. Mishra, and J. A. Baumann, "2 - A brief introduction to FSW," in Residual Stresses in Friction Stir Welding, ed: Boston: Butterworth-Heinemann, 2014, pp. 5-6.
    [9] L. Cederqvist and A. P. Reynolds, "Factors affecting the properties of friction stir welded aluminum lap joints," Welding Journal Research Supplement, pp. 281-287, 2001.
    [10] R. Zettler, "3 - Material deformation and joint formation in friction stir welding," in Friction Stir Welding, D. Lohwasser and Z. Chen, Eds., ed: Woodhead Publishing, 2010, pp. 42-72.
    [11] J. P. Martin. (2011). Stationary shoulder friction stir welding of fillet reinforced T-butt joints in aluminum alloys. Available: http://www.twi-global.com/technical-knowledge/industrial-member-reports/stationary-shoulder-friction-stir-welding-of-fillet-reinforced-t-butt-joints-in-aluminum-alloys-1002-2011/
    [12] D. Li, X. Yang, L. Cui, F. He, and H. Shen, "Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding," Materials & Design, vol. 64, pp. 251-260, 2014.
    [13] P. S. Davies, B. P. Wynne, W. M. Rainforth, M. J. Thomas, and P. L. Threadgill, "Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V," Metallurgical and Materials Transactions A, vol. 42, pp. 2278-2289, 2011.
    [14] J. Q. Li and H. J. Liu, "Effects of tool rotation speed on microstructures and mechanical properties of AA2219-T6 welded by the external non-rotational shoulder assisted friction stir welding," Materials & Design, vol. 43, pp. 299-306, 2013.
    [15] P. L. Threadgill, M. M. Z. Ahmed, J. P. Martin, J. G. Perrett, and B. P. Wynne, "The use of bobbin tools for friction stir welding of aluminium alloys," Material Science Forum, vol. 638-642, pp. 1179-1184, 2010.
    [16] W. Thomas, S. Kallee, D. Staines, and P. Oakley, "Friction stir welding- Process variants and developments in the automotive industry," SAE Technical Papers, 2006.
    [17] L. Shi, C. S. Wu, and H. J. Liu, "The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding," International Journal of Machine Tools and Manufacture, vol. 91, pp. 1-11, 2015.
    [18] B. Kuang, Y. Shen, W. Chen, X. Yao, H. Xu, J. Gao, and J. Zhang, "The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with “pinless” tool configuration," Materials & Design, vol. 68, pp. 54-62, 2015.
    [19] 劉鑑德,「使用無探針工具於摩擦攪拌銲接之接合特性的研究」,博士論文,機械與機電工程學系研究所,國立中山大學,高雄市,2013。
    [20] A. Forcellese and M. Simoncini, "Plastic flow behaviour and formability of friction stir welded joints in AZ31 thin sheets obtained using the "pinless" tool configuration," Materials and Design, vol. 36, pp. 123-129, 2012.
    [21] A. Forcellese, F. Gabrielli, and M. Simoncini, "Mechanical properties and microstructure of joints in AZ31 thin sheets obtained by friction stir welding using "pin" and "pinless" tool configurations," Materials and Design, vol. 34, pp. 219-229, 2012.
    [22] M. Simoncini, D. Ciccarelli, A. Forcellese, and M. Pieralisi, "Micro- and macro- mechanical properties of pinless friction stir welded joints in AA5754 aluminium thin sheets," Procedia CIRP, vol. 18, pp. 9-14, 2014.
    [23] K. Aota and K. Ikeuchi, "Friction stir welding of aluminium lap joint by tool without probe," Welding International, vol. 24, pp. 197-205, 2010.
    [24] R. S. Mishra, Z. Y. Ma, and I. Charit, "Friction stir processing: A novel technique for fabrication of surface composite," Materials Science and Engineering A, vol. 341, pp. 307-310, 2003.
    [25] W.S. Chang, S. R. Rajesh, C. K. Chun, and H. J. Kim, "Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy," Journal of Materials Science & Technology, vol. 27, pp. 199-204, 2011.
    [26] Y. F. Sun, Y. Konishi, M. Kamai, and H. Fujii, "Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding," Materials & Design, vol. 47, pp. 842-849, 2013.
    [27] H. Fujii, T. Tatsuno, T. Tsumura, M. Tanaka, and K. Nakata, "Hybrid friction stir welding of carbon steel," in Materials Science Forum vol. 580-582, pp. 393-396, 2008.
    [28] K. H. Song, T. Tsumura, and K. Nakata, "Development of microstructure and mechanical properties in laser-FSW hybrid welded inconel 600," Materials Transactions, vol. 50, pp. 1832-1837, 2009.
    [29] K. Park, "Development and analysis of ultrasonic assisted friction stir welding process.," Dissertation, University of Michigan, 2009.
    [30] K. Park, G. Y. Kim, and J. Ni, "Design and analysis of ultrasonic assisted friction stir welding," in ASME International Mechanical Engineering Congress and Exposition, Proceedings, pp. 731-737, 2008.
    [31] X. C. Liu and C. S. Wu, "Experimental study on ultrasonic vibration enhanced friction stir welding," in Proceedings of the 1st International Joint Symposium on Joining and Welding, H. Fujii, ed: Woodhead Publishing, 2013, pp. 151-154.
    [32] H. Bang, H. Bang, G. Jeon, I. Oh, and C. Ro, "Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel," Materials & Design, vol. 37, pp. 48-55, 2012.
    [33] E. Scutelnicu, D. Birsan, and R. Cojocaru, "Research on friction stir welding and tungsten inert gas assisted friction stir welding of copper," in Proceedings of the 4th International Conference on Manufacturing Engineering, Quality and Production Systems, Recent Advanced Manufacturing Engineering, Spain, pp. 97-102, 2011.
    [34] Q. Yang, S. Mironov, Y. S. Sato, and K. Okamoto, "Material flow during friction stir spot welding," Materials Science and Engineering: A, vol. 527, pp. 4389-4398, 2010.
    [35] Y.C. Chiou, C.T. Liu, and R.T. Lee, "A pinless embedded tool used in FSSW and FSW of aluminum alloy," Journal of Materials Processing Technology, vol. 213, pp. 1818-1824, 2013.
    [36] Y. Tozaki, Y. Uematsu, and K. Tokaji, "A newly developed tool without probe for friction stir spot welding and its performance," Journal of Materials Processing Technology, vol. 210, pp. 844-851, 2010.
    [37] Y. F. Sun, H. Fujii, N. Takaki, and Y. Okitsu, "Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique," Materials & Design, vol. 47, pp. 350-357, 2013.
    [38] Y. F. Sun, H. Fujii, N. Takaki, and Y. Okitsu, "Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique," Materials and Design, vol. 37, pp. 384-392, 2012.
    [39] Y. C. Chen, S. F. Liu, D. Bakavos, and P. B. Prangnell, "The effect of a paint bake treatment on joint performance in friction stir spot welding AA6111-T4 sheet using a pinless tool," Materials Chemistry and Physics, vol. 141, pp. 768-775, 2013.
    [40] D. Bakavos, Y. Chen, L. Babout, and P. Prangnell, "Material interactions in a novel pinless tool approach to friction stir spot welding thin aluminum sheet," Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 42, pp. 1266-1282, 2011.
    [41] K. Aota and K. Ikeuchi, "Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plates," Welding International, vol. 23, pp. 572-580, 2009.
    [42] K. Aota, M. Takahashi, and K. Ikeuchi, "Friction stir spot welding of aluminium to steel by rotating tool without probe," Welding International, vol. 24, pp. 96-104, 2009.
    [43] T. Montag, J.P. Wulfsberg, H. Hameister, and R. Marschner, "Influence of tool wear on quality criteria for refill friction stir spot welding (RFSSW) process," Procedia CIRP, vol. 24, pp. 108-113, 2014.
    [44] Z. Shen, X. Yang, Z. Zhang, L. Cui, and T. Li, "Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints," Materials & Design, vol. 44, pp. 476-486, 2013.
    [45] S. Venukumar, S. Muthukumaran, S. G. Yalagi, and S. V. Kailas, "Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets," International Journal of Fatigue, vol. 61, pp. 93-100, 2014.
    [46] U. Suhuddin, V. Fischer, F. Kroeff, and J. F. dos Santos, "Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys," Materials Science and Engineering: A, vol. 590, pp. 384-389, 2014.
    [47] Y. Q. Zhao, H. J. Liu, S. X. Chen, Z. Lin, and J. C. Hou, "Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy," Materials & Design, vol. 62, pp. 40-46, 2014.
    [48] G. Buffa, L. Fratini, and M. Piacentini, "On the influence of tool path in friction stir spot welding of aluminum alloys," Journal of Materials Processing Technology, vol. 208, pp. 309-317, 2008.
    [49] B. Tweedy, C. Widener, J. Merry, J. Brown, and D. Burford, "Factors affecting the properties of swept friction stir spot welds," SAE Technical Paper, 2008.
    [50] Z. M. Su, R. Y. He, P. C. Lin, and K. Dong, "Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets," International Journal of Fatigue, vol. 61, pp. 129-140, 2014.
    [51] 蘇政明,「鋁合金Alclad 2024-T3摩擦攪拌點銲之破裂及疲勞行為分析」,博士論文,機械工程學系暨研究所,國立中正大學,嘉義縣,2014。
    [52] T. Hartman, M. Miles, S. T. Hong, R. Steel, and S. Kelly, "Effect of PCBN tool grade on joint strength and tool life in Friction Stir Spot Welded DP 980 Steel," Wear, 2015.
    [53] A. K. Lakshminarayanan, V. E. Annamalai, and K. Elangovan, "Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints," Journal of Materials Research and Technology, 2015.
    [54] D. H. Choi, C. Y. Lee, B. W. Ahn, J. H. Choi, Y. M. Yeon, K. Song, H. S. Park, Y. J. Kim, C. D. Yoo, and S. B. Jung, "Frictional wear evaluation of WC–Co alloy tool in friction stir spot welding of low carbon steel plates," International Journal of Refractory Metals and Hard Materials, vol. 27, pp. 931-936, 2009.
    [55] M. K. Bilici and A. İ. Yükler, "Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets," Materials & Design, vol. 33, pp. 145-152, 2012.
    [56] M. K. Bilici and A. I. Yukler, "Effects of welding parameters on friction stir spot welding of high density polyethylene sheets," Materials & Design, vol. 33, pp. 545-550, 2012.
    [57] M. K. Bilici, A. İ. Yükler, and M. Kurtulmuş, "The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets," Materials & Design, vol. 32, pp. 4074-4079, 2011.
    [58] S. H. Dashatan, T. Azdast, S. R. Ahmadi, and A. Bagheri, "Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets," Materials & Design, vol. 45, pp. 135-141, 2013.
    [59] K. J. Colligan, "2 - The friction stir welding process: an overview," Friction Stir Welding, D. Lohwasser and Z. Chen, ed: Woodhead Publishing, 2010, pp. 15-41.
    [60] 王國慶,趙衍華,铝合金的搅拌摩擦焊接:中国宇航出版社,2010。
    [61] R. S. Mishra and M. W. Mahoney, Friction stir welding and processing: ASM International, 2007.
    [62] 劉如真,「鋁合金A6061-T6摩擦攪拌點銲接合機構之研究」,博士論文,機械工程系,國立臺灣科技大學,台北市,2012。
    [63] E. O. Hall, "The deformation and ageing of mild steel: III Discussion of results," Proceedings of the Physical Society. Section B, vol. 64, p. 747, 1951.
    [64] N. J. Petch, "The cleavage strength of polycrystals," The Journal of the Iron and Steel Institute, vol. 174, pp. 25-28, 1953.
    [65] Y. C. Lin, J. J. Liu, and J. N. Chen, "Material flow tracking for various tool geometries during the friction stir spot welding process," Journal of Materials Engineering and Performance, vol. 22, pp. 3674-3683, 2013.
    [66] 陳立中,「不同製程參數下的鋁合金A6061-T6摩擦攪拌點銲之流場研究」,碩士論文,機械工程系,國立臺灣科技大學,台北市,2012。
    [67] S. Horie, K. Shinozaki, M. Yamamoto, and T. H. North, "Experimental investigation of material flow during friction stir spot welding," Science and Technology of Welding & Joining, vol. 15, pp. 666-670, 2010.
    [68] S. Horie, K. Shinozaki, M. Yamamoto, K. Kadoi, and T. H. North, "Effects of tool geometry and process conditions on material flow and strength of friction stir spot welded joint," Quartery Journal of the Japan Welding Society, vol. 29, pp. 119-123, 2011.
    [69] H. Badarinarayan, Q. Yang, and S. Zhu, "Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy," International Journal of Machine Tools and Manufacture, vol. 49, pp. 142-148, 2009.
    [70] G. Buffa, P. Fanelli, L. Fratini, and F. Vivio, "Influence of joint geometry on micro and macro mechanical properties of friction stir spot welded joints," Procedia Engineering, vol. 81, pp. 2086-2091, 2014.
    [71] S. Babu, V. S. Sankar, G. D. Janaki Ram, P. V. Venkitakrishnan, G. Madhusudhan Reddy, and K. Prasad Rao, "Microstructures and mechanical properties of friction stir spot welded aluminum alloy AA2014," Journal of Materials Engineering and Performance, vol. 22, pp. 71-84, 2013.
    [72] Y. Tozaki, Y. Uematsu, and K. Tokaji, "Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys," International Journal of Machine Tools and Manufacture, vol. 47, pp. 2230-2236, 2007.
    [73] P. Su, A. Gerlich, T. H. North, and G. J. Bendzsak, "Intermixing in dissimilar friction stir spot welds," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 38A, pp. 584-595, 2007.
    [74] W. Yuan, R. S. Mishra, B. Carlson, R. Verma, and R. K. Mishra, "Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy," Materials Science and Engineering A, vol. 543, pp. 200-209, 2012.
    [75] H. M. Rao, W. Yuan, and H. Badarinarayan, "Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys," Materials & Design, vol. 66, pp. 235-245, 2015.
    [76] C. D. Cox, B. T. Gibson, A. M. Strauss, and G. E. Cook, "Effect of pin length and rotation rate on the tensile strength of a friction stir spot-welded Al alloy: A contribution to automated production," Materials and Manufacturing Processes, vol. 27, pp. 472-478, 2011.
    [77] S. Arul, S. Miller, G. Kruger, T. Y. Pan, P. Mallick, and A. Shih, "Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy," Science and Technology of Welding & Joining, vol. 13, pp. 629-637, 2008.
    [78] S. Lathabai, M. J. Painter, G. M. D. Cantin, and V. K. Tyagi, "Friction spot joining of an extruded Al–Mg–Si alloy," Scripta Materialia, vol. 55, pp. 899-902, 2006.
    [79] S. Bozzi, A. L. Helbert-Etter, T. Baudin, V. Klosek, J. G. Kerbiguet, and B. Criqui, "Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds," Journal of Materials Processing Technology, vol. 210, pp. 1429-1435, 2010.
    [80] A. Addison and A. Robelou, "Friction stir spot welding: principal parameters and their effects," in Proceedings of the 5th International Friction Stir Welding Symposium, Metz, France, 2004.
    [81] Y. C. Lin, J. J. Liu, B. Y. Lin, C. M. Lin, and H. L. Tsai, "Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds," Materials & Design, vol. 35, pp. 350-357, 2012.
    [82] 陳奕維,「AZ61鎂合金摩擦攪拌點銲銲接性研究」,碩士論文,機械工程系, 國立臺灣科技大學,台北市,2009。
    [83] A. Gerlich, P. Su, and T. H. North, "Tool penetration during friction stir spot welding of Al and Mg alloys," Journal of Materials Science, vol. 40, pp. 6473-6481, 2005.
    [84] P. Su, A. Gerlich, T. H. North, and G. J. Bendzsak, "Energy generation and stir zone dimensions in friction stir spot welds," SAE Technical Papers, 2006.
    [85] Y. K. Yang, H. Dong, H. Cao, Y. A. Chang, and S. Kou, "Liquation of Mg alloys in friction stir spot welding," Welding Journal, pp. 167-177, 2008.
    [86] D. Radakovic and M. Tumuluru, "An evaluation of the cross-tension test of resistance spot welds in high-strength dual-phase steels," Welding Journal, vol. 91, pp. 8-15, 2012.
    [87] D. A. Wang and S. C. Lee, "Microstructures and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets," Journal of Materials Processing Technology, vol. 186, pp. 291-297, 2007.
    [88] W. Yuan, R. S. Mishra, S. Webb, Y. L. Chen, B. Carlson, D. R. Herling, and G. J. Grant, "Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds," Journal of Materials Processing Technology, vol. 211, pp. 972-977, 2011.
    [89] S. Hirasawa, H. Badarinarayan, K. Okamoto, T. Tomimura, and T. Kawanami, "Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method," Journal of Materials Processing Technology, vol. 210, pp. 1455-1463, 2010.
    [90] 張永遠,感應電爐熔鑄能力本位訓練教材-認識非鐵金屬材料: 行政院勞工委員會職業訓練局,2001。
    [91] 張玉龍,趙中魁,實用輕金屬材料手冊: 化學工業出版社,2006。
    [92] R. E. Sanders Jr., P. A. Hollinshead, and E. A. Simielli, " Industrial development of non-heat treatable aluminum alloys", MATERIALS FORUM, pp. 53-64, 2004.
    [93] Y. J. Chao, X. Qi, and W. Tang, "Heat transfer in friction stir welding—experimental and numerical studies," Journal of Manufacturing Science and Engineering, vol. 125, pp. 138-145, 2003.
    [94] P. A. Colegrove and H. R. Shercliff, "Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir welds," Science and Technology of Welding and Joining, vol. 8, pp. 360-368, 2003.
    [95] Ø. Frigaard, Ø. Grong, and O. T. Midling, "A process model for friction stir welding of age hardening aluminum alloys," Metallurgical and Materials Transactions A, vol. 32, pp. 1189-1200, 2001.
    [96] M. Z. H. Khandkar, J. A. Khan, and A. P. Reynolds, "Prediction of temperature distribution and thermal history during friction stir welding: input torque based model," Science and Technology of Welding and Joining, vol. 8, pp. 165-174, 2003.
    [97] C. Y. Yang, "Inverse determination of heat input during the friction stir welding process," International Journal of Heat and Mass Transfer, vol. 76, pp. 411-418, 2014.
    [98] P. Prasanna, B. S. Rao, and G. K. Rao, "Finite element modeling for maximum temperature in friction stir welding and its validation," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 925-933, 2010.
    [99] Z. Zhang, Q. Wu, and H. W. Zhang, "Numerical studies of effect of tool sizes and pin shapes on friction stir welding of AA2024-T3 alloy," Transactions of Nonferrous Metals Society of China, vol. 24, pp. 3293-3301, 2014.
    [100] H. Su, C. S. Wu, A. Pittner, and M. Rethmeier, "Thermal energy generation and distribution in friction stir welding of aluminum alloys," Energy, vol. 77, pp. 720-731, 2014.
    [101] S. Mahabunphachai and M. Koç, "Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures," Materials & Design, vol. 31, pp. 2422-2434, 2010.
    [102] R. S. Mishra, P. S. De, and N. Kumar, Friction stir welding and processing: Springer, 2014.
    [103] K. V. Jata and S. L. Semiatin, "Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys," Scripta Materialia, vol. 43, pp. 743-749, 2000.
    [104] K. J. Al-Fadhalah, A. I. Almazrouee, and A. S. Aloraier, "Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063," Materials & Design, vol. 53, pp. 550-560, 2014.
    [105] W. Tang, X. Guo, J. C. McClure, L. E. Murr, and A. Nunes, "Heat Input and Temperature Distribution in Friction Stir Welding," Journal of Materials Processing & Manufacturing Science, vol. 7, pp. 163-172, 1998.
    [106] Y. S. Sato, M. Urata, H. Kokawa, and K. Ikeda, "Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys," Materials Science and Engineering: A, vol. 354, pp. 298-305, 2003.
    [107] P. Groche, S. Wohletz, M. Brenneis, C. Pabst, and F. Resch, "Joining by forming—A review on joint mechanisms, applications and future trends," Journal of Materials Processing Technology, vol. 214, pp. 1972-1994, 2014.
    [108] C. D. Cox, B. T. Gibson, A. M. Strauss, and G. E. Cook, "Energy input during friction stir spot welding," Journal of Manufacturing Processes, vol. 16, pp. 479-484, 2014.
    [109] Z. Zhang, J. T. Chen, Z. W. Zhang, and H. W. Zhang, "Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses," Journal of Materials Science, vol. 46, pp. 5815-5821, 2011.

    QR CODE