簡易檢索 / 詳目顯示

研究生: 丁楷恩
Kai-En Ting
論文名稱: 不飽和夯實紅土之土壤波速與剪力強度及土壤模數之關係
Relationship between Soil Velocity, Shear Strength and Soil Modulus of Unsaturated Compacted Lateritic Soils
指導教授: 林宏達
Horn-Da Lin
口試委員: 王建智
Chien-Chih Wang
拱祥生
Hsiang-Sheng Kung
李安叡
An-Jui Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 153
中文關鍵詞: 不飽和土壤波速剪力強度土壤模數
外文關鍵詞: Unsaturated soil, Soil velocity, Shear Strength, Soil Modulus
相關次數: 點閱:235下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣邊坡及台地等淺層土壤,長時間位於地下水位面以上,土壤常處於不飽和狀態,以傳統飽和土壤力學無法詮釋其行為。現地夯實土壤可能因降雨日曬而改變其土壤含水量,進而影響土壤的基質吸力、強度及勁度等。因此本研究為探討不飽和夯實土壤的力學特性,進行一系列室內試驗,探討土壤波速、強度及模數之間的關係,以供工程應用參考。本研究採用之試驗主要為超音波波速量測試驗,不飽和無圍壓縮試驗,與嵌入彎曲元件之不飽和三軸多階加載試驗。試驗結果顯示,土壤波速與土壤強度明顯受基質吸力影響,不過不同初始夯實狀態,其變化趨勢不同。造成此差異的原因除了土壤組構不同外,試體於濕化過程膨脹程度也不同,但無論初始夯實狀態如何,其土壤波速與土壤強度增量皆呈一線性關係。以不飽和無圍壓縮試驗之應力-應變關係求得之應變相依割線模數,整體變化趨勢合理,但有低估初始勁度的現象。本研究提出一個修正方法,修正後之結果相當合理,可做為推估不飽和土壤之應變相依割線模數之參考。


    Surficial soils of slopes and terraces in Taiwan are often below the groundwater table and belong to the unsaturated soil. The traditional saturated soil mechanics cannot interpret its behavior. In addition, the compacted soil in the field may change its water content due to rainfall or sun shine, resulting in changes in matric suction, strength and stiffness. In order to investigate the mechanical properties of the unsaturated compacted soil, this study conducted a series of laboratory experiments to investigate the relationship between soil velocity, strength and modulus. This study will conduct ultrasonic wave velocity measurement test, unsaturated unconfined compression test and unsaturated multistage triaxial test with the embedded bender element. Test results show that soil velocity and soil strength are significantly affected by the matric suction. However, the variation trends vary with the initial compaction conditions. The difference is probably due to the difference in soil structure and the different volume expansion of the specimen in the saturation process. However, regardless of the initial compaction condition, the relationship between soil velocity and soil strength increment is linear. The trend of the strain-dependent secant modulus obtained from the stress-strain relationship of the unsaturated unconfined compression test is reasonable. However, the initial stiffness is underestimated. Therefore, this study proposes a correction method. The results after the correction look reasonable and may be used to estimate the strain-dependent secant modulus of unsaturated soils.

    目錄 論文摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1研究目的與動機 1.2研究內容與架構 第二章 文獻回顧 2.1不飽和夯實土壤之性質 2.2不飽和夯實土壤吸力特性與水分特性曲線 2.3不飽和夯實土壤剪力強度 2.3.1延伸莫爾-庫倫破壞準則 2.3.2不飽和三軸多階加載試驗 2.4不飽和無圍壓縮試驗 2.5不飽和夯實土壤波速 2.5.1超音波於土壤之應用 2.5.2彎曲元件於土壤之應用 2.6不飽和夯實土壤之模數特性 2.6.1不飽和土壤之應變相依割線模數 2.6.2以應力-應變關係探討小應變模數之限制 第三章 試驗計畫、設備與方法 3.1試驗計畫與流程 3.2試體製作與基本性質試驗 3.2.1土壤基本物理性質試驗 3.2.2 X-Ray繞射試驗 3.2.3修正夯實試驗與靜壓夯實製作試體 3.2.4飽和三軸試驗 3.3土壤吸力量測試驗 3.3.1壓力平板試驗設備 3.3.2壓力平板試驗方法 3.4不飽和無圍壓縮試驗與超音波速試驗 3.4.1乾濕化環境模擬試驗 3.4.2不飽和無圍壓縮試驗 3.4.3超音波波速量測試驗 3.5嵌入彎曲元件之不飽和三軸試驗 3.5.1嵌入彎曲元件之不飽和三軸試驗設備 3.5.2嵌入彎曲元件之不飽和多階加載試驗方法 第四章 試驗結果探討與分析 4.1土壤基本性質試驗結果 4.1.1 土壤基本性質與夯實特性 4.1.2 不飽和夯實紅土吸力特性 4.1.3 飽和三軸試驗結果 4.2不飽和無圍壓縮試驗與超音波波速量測試驗結果 4.2.1不飽和無圍壓縮試驗 4.2.2超音波波速量測試驗 4.3以土壤波速推估無圍壓縮強度與土壤模數 4.3.1以壓力波速預估無圍壓縮強度 4.3.2以土壤波速計算最大土壤模數 4.4以無圍壓縮試驗之應力-應變關係探討應變相依割線模數 4.4.1 以應力-應變關係探討應變相依割線模數之結果 4.4.2 校正應變相依割線模數及其適用之範圍 4.5嵌入彎曲元件之不飽和三軸多階加載試驗結果 第五章 結論與建議 5.1結論 5.2建議 參考文獻

    1.王正君,「乾、濕化路徑與夯實狀態對土壤基質吸力之影響」,碩士論文,國立台灣科技大學營建工程系,(2008)。
    2.王旭暉,「以基質吸力觀點探討不飽和夯實紅土無圍壓縮強度與視凝聚力關係」,碩士論文,國立台灣科技大學營建工程系,(2016)。
    3.江宇祥,「不飽和夯實紅土之視凝聚力與剪力強度特性」,碩士論文,國立台灣科技大學營建工程系,(2014)。
    4.李豪智,「乾濕化路徑下基質吸力對不飽和夯實紅土應變相依土壤模數之影響」,碩士論文,國立台灣科技大學營建工程研究所,(2016)。
    5.李家豪,「Apparent Cohesion and Small-Strain Soil Modulus of Unsaturated Compacted Lateritic Soil」,碩士論文,國立台灣科技大學營建工程系,(2017)。
    6.周勃翰,「不飽和夯實紅土視凝聚力與吸力特性之試驗探討」,碩士論文,國立台灣科技大學營建工程系,(2015)。
    7.林郁博,「不飽和夯實紅土波速與力學性質關係之研究」,碩士論文,國立台灣科技大學營建工程系,(2017)。
    8.拱祥生,「降雨對不飽和土壤邊坡穩定性之影響研究」,碩士論文,國立台灣科技大學營建工程研究所,(1999)。
    9.拱祥生,「不飽和紅土基質吸力行為及其在工程之應用」,博士論文,國立台灣科技大學營建工程研究所,(2011)。
    10.張鎮麟,「不飽和淺層崩基土壤之基質吸力與剪力強度特性」,碩士論文,國立台灣科技大學營建工程系,(2012)。
    11.張哲維,「Study of Apparent Cohesion from Unconfined Compression Test under Unsaturated Soil Concepts」,碩士論文,國立台灣科技大學營建工程系,(2013)。
    12.廖志穎,「不飽和路基土壤濕化及剪力模數研究」,碩士論文,國立台灣科技大學營建工程系,(2007)。
    13.龔東慶,「考慮台北沉泥質黏土小應變行為之深開挖地表沉陷分析」,博士論文,國立台灣科技大學營建工程系,(2003)。
    14.Croney, D. and J.D. Coleman., “Pore Pressure and Suction in Soils”, In Proceedings of the Conference on Pore Pressure and Suction in Soils, Butterworths, London, pp.31-37, (1961).
    15.Costa Filho, L. D. M., ”Measurement of axial strains in triaxial tests on London Clay”, Geotechnical Testing Journal, Vol.8, No.1, pp.3-13, (1985).
    16.Cuccovillo, T., “The measurement of local axial strains in triaxial tests using LVDTs.”, Géotechnique, Vol.47, No.1, pp.167-172, (1997).
    17.Daramola, C., "The Influence of Stress-History on the Deformation of a Sand," PhD thesis, Imperial College, University of London, London, England, (1978).
    18.Dyvik, R., & Madshus, C., “Lab Measurements of Gmax Using Bender Elements.”, In Advances in the art of testing soils under cyclic conditions, pp.186-196. ASCE, (1985).
    19.Fredlund, D. G., and Morgenstern, N. R., “Stress State Variables for Unsaturated Soil.” Journal of Geotechnical Engineering, ASCE, GT5, Vol.103, pp.447-466, (1977).
    20.Fredlund, D. G., Morgenstern, N. R., & Widger, R. A., “The shear strength of unsaturated soils.”, Canadian geotechnical journal, Vol.15, No.3, pp.313-321, (1978).
    21.Fredlund, D. G., Rahardjo, H., & Gan, J. K. M., “Non-linearity of strength envelope for unsaturated soils.”, Proc. 6th Int. Conf. Expansive Soils, New Delhi, Vol.1, pp. 49-54, (1987).
    22.Fredlund, D. G. and Rahardjo, H., “Soil Mechanics for Unsaturated Soils.”, John Wiley, New York, (1993).
    23.Fredlund, D. G., & Xing, A., “Equations for the soil-water characteristic curve.”, Canadian geotechnical journal, Vol.31, No.4, pp.521-532, (1994).
    24.Holtz, R. D., & Kovacs, W. D., “An introduction to geotechnical engineering.”, (1981). 2th edition,Pearson Education.
    25.Ho, D. Y. F. and Fredlund, D. G., “A Multistage Triaxial Test for Unsaturated Soils”, Geotechnical Testing Journal, Vol.5, No.1, pp. 18-28, (1982).
    26.Lewis, C. D., “Industrial and Business Forecasting Method.”, Butterworth Scientific Publishers, London, (1982).
    27.Leong, E. C., Yeo, S. H., & Rahardjo, H., “Measurement of wave velocities and attenuation using an ultrasonic test system.”, Canadian Geotechnical Journal, Vol.41, No.5, pp.844-860, (2004).
    28.Lin, H. D., Kung, J. H. S., and Wang, C. C., “Matric Suction and Shear Modulus of Unsaturated Compacted Lateritic Soil Subjected to Drying and Werting”, Abstracts of The Sixth Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, pp.139-140, July 12-15, 2014, Kitakyushu, Japan, (2014).
    29.Lin, H. D., Wang, C. C., and Kung, J. H. S., “Wetting and Drying on Matric Suction of Compacted Cohesive Soil”, Proceedings, ISOPE-2015, the 25th International Ocean and Polar Engineering Conference (with CD-ROM), Vol.2, pp.1069-1075, Kona, Big Island, Hawaii, USA, (2015).
    30.Lin, H. D., Jiang, Y. S., Wang, C. C., & Chen, H. Y., “Assessment of Apparent Cohesion of Unsaturated Lateritic Soil Using an Unconfined Compression Test.”, Proceedings of Advances in Civil, Environmental, and Materials Research (ACEM’16), (2016).
    31.Miller, C. J., Yesiller, N., Yaldo, K., and Merayyan, S., “Impact of Soil Type and Compaction Conditions on Soil Water Characteristic”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.9, pp. 733-742, (2002).
    32.Mendoza, C. E., Colmenares, J. E., & Merchan, V. E., “Stiffness of an unsaturated compacted clayey soil at very small strains.”, Proc, Int. Symp. on Advanced Experimental Unsaturated Soil Mechanics, pp. 199-204, (2005).
    33.Nakagawa, K., Soga, K., & Mitchell, J. K., “Pulse transmission system for measuring wave propagation in soils.”, Journal of Geotechnical Engineering, Vol.122, No.4, pp.302-308, (1996).
    34.Nyunt, T.T., Leong, E.C. and Rahardjo, H., “Stress-strain behavior and shear strength of unsaturated residual soil from triaxial tests”, Conference on Unsaturated Soils: Theory and Practice, Thailand, (2011).
    35.Oh, W. T., & Vanapalli, S. K., “The relationship between the elastic and shear modulus of unsaturated soils.”, Unsaturated soils, proceedings of the 5th international conference on unsaturated soils (eds E. Alonso and A. Gens), pp.341-346, (2011).
    36.Stephenson, R. W., “Ultrasonic testing for determining dynamic soil moduli.”, Dynamic Geotechnical Testing, ASTM International, (1978).
    37.Senthilmurugan, T., & Ilamparuthi, K., “Study on Compaction Characteristics and Strength through Ultrasonic Method.”, Advances in Pavement Engineering, pp.1-12, (2005).
    38.Sawangsuriya, A., “Wave Propagation Methods for Determining Stiffness of Geomaterials.”, Wave Processes in Classical and New Solids, InTech, (2012).
    39.Thu, T. M., Rahardjo, H., & Leong, E. C., “Shear strength and pore-water pressure characteristics during constant water content triaxial tests.”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.3, pp.411-419, (2006).
    40.Viggiani, G., & Atkinson, J. H., “Stiffness of fine-grained soil at very small strains.”, Géotechnique, Vol.45, No.2, pp.249-265, (1995).
    41.Vanapalli, S. K., Fredlund, D. G., & Pufahl, D. E., “The relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till.”, Geotechnical Testing Journal, Vol.19, No.3, pp.259-268, (1996).
    42.Williams, J., Prebble, R.E., Williams, W.T., Hignett, C.T., “The influence of texture, structure and clay mineralogy on the soil moisture characteristic.”, Aust. J. Soil 21, pp.15-32, (1983).
    43.Yesiller, N., Inci, G., & Miller, C. J., “Ultrasonic testing for compacted clayey soils.”, Advances in Unsaturated Geotechnics, pp.54-68, (2000).
    44.Yang, S. R., Lin, H. D. Kung, J. H. S. and Liao, J. Y., “Shear Wave Velocity and Suction of Unsaturated Soil Using Bender Element and Filter Paper Method”, Journal of GeoEngineering, Vol.3, No.2, pp. 67-74, (2008).

    QR CODE