簡易檢索 / 詳目顯示

研究生: Asep Nugroho
Asep Nugroho
論文名稱: 移動機器人之智慧能源管理系統
Intelligent Energy Management System for Mobile Robot
指導教授: 李敏凡
Min-Fan Ricky Lee
口試委員: 柯正浩
Cheng-Hao Ko
湯梓辰
Joni Tzuchen Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 能源管理太陽能超級電容器DC-DC 電源轉換器模糊邏輯移動機器人
外文關鍵詞: Energy management, solar energy, supercapacitor, DC-DC power converters, fuzzy logic, mobile robot
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一台用於搜尋和救援(SAR)的移動機器人(MR)。由於搜救任務的複雜性和潛在危險,因此推動移動機器人的使用來降低搜救團隊的受傷風險。由於搜救任務的持續時間不穩定,因此能源管理系統對於維持可持續運作至關重要。太陽能是可以從自然界中獲取的一種能源。然而,太陽能的缺點是容易受到天氣因素的影響。通過組合電池和超級電容器,EMS 將為該缺點提供有益的幫助。通過模糊邏輯控制器(FLC)和PI 控制器來管理電池和超級電容器之間的功率共享。FLC 為PI 控制器提供參考值,因此它將超級電容器電壓保持在定值。它將提供足夠的空間來儲存太陽能,同時幫助電池保持更長的運行時間。此外,本文所提出的EMS 提供了一種休眠模式的特點,以在主電源太弱時節省能量,並且適合於移動機器人應用。模擬和實驗表明,EMS 設計可以實現維持超級電容器電壓和調節功率共享。不僅如此,此系統還為中央控制器提供百分比功率參考建議,以管理其負載電流。根據現有的光伏電流和負載管理,此系統可以將電池功耗降低多達35%,並將峰值電流降低多達5%。


    A mobile robot (MR) commonly is used in search and rescue (SAR) operation. The task complexity and potential hazard drive the utilization of mobile robot to reduce the risk of the SAR team for injured. Because SAR mission has an uncertainty of time duration, the energy management system is crucial to preserve sustainable operation. Solar energy is one energy that can be harvested from nature. However, solar energy has the drawback related to fluctuation depending on the weather. By combining the battery and the supercapacitor, the EMS will provide beneficially to solve the shortcoming.
    Managing power sharing between the battery and the supercapacitor is conducted by the fuzzy logic controller and proportional integral controller. The fuzzy logic controller provides a reference value to proportional integral controller so it will keep the supercapacitor voltage at a certain value. It will provide sufficient space to store solar energy and at the same time help the battery to stay longer for operation. Moreover, the proposed energy management system offers feature for providing load power reference recommendation and offering hibernate mode to saving energy when the main power source is too weak and it is suitable for mobile robot application.
    The simulation and experimental show the energy management system design can achieve to maintain the supercapacitor voltage and regulating the power-sharing. Moreover, it also provides percentage power reference recommendation for the central controller to manage its load current. It can reduce the battery power consumption up to 35% and reducing peak current up to 5% depend on the existing photovoltaic current and load management.

    Acknowledgements III Chinese Abstract IV English Abstract V Table of Contents VI List of Figures VII List of Tables IX Chapter 1 Introduction 1 Chapter 2 Modelling 5 Chapter 3 Intelligent EMS 14 Chapter 4 Hardware and Software Implementation 27 Chapter 5 Result and Discussion 34 Chapter 6 Conclusion and Future Work 47 References 49

    [1] D. J. Nallathambi, “Comprehensive evaluation of the performance of rescue robots using victim robots,” in 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 2018, pp. 60–64.
    [2] X. He, X. Sun, F. Wang, X. Li, F. Zhuo, and S. Luo, “Design of energy management system for a small solar-powered unmanned aerial vehicle,” in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Charlotte, NC, 2018, pp. 1–4.
    [3] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transp. Electrif., vol. 3, no. 1, pp. 191–200, 2017.
    [4] J. Shiau, D. Ma, P. Yang, G. Wang, and J. H. Gong, “Design of a solar power management system for an experimental uav,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 4, pp. 1350–1360, 2009.
    [5] K. Alobeidli and V. Khadkikar, “A new ultracapacitor state of charge control concept to enhance battery lifespan of dual storage electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10470–10481, 2018.
    [6] Q. Zhang and G. Li, “Experimental study on a semi-active battery-supercapacitor hybrid energy storage system for electric vehicle application,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 1014–1021, 2020.
    [7] Z. Fu, L. Zhu, F. Tao, P. Si, and L. Sun, “Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan,” Int. J. Hydrogen Energy, vol. 45, no. 15, pp. 8875–8886, 2020.
    [8] M. Ruiz-Cortés, E. Romero-Cadaval, C. Roncero-Clemente, F. Barrero-González, and E. González-Romera, “Energy management strategy to coordinate batteries and ultracapacitors of a hybrid energy storage system in a residential prosumer installation,” in 2017 International Young Engineers Forum (YEF-ECE), Almada, Portugal, 2017, pp. 30–35.
    [9] B. Liu, F. Zhuo, Y. Zhu, and H. Yi, “System operation and energy management of a renewable energy-based dc micro-grid for high penetration depth application,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1147–1155, 2015.
    [10] B. Lee, S. Kwon, P. Park, and K. Kim, “Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 4, pp. 3167–3177, 2014.
    [11] E. Avila et al., “Energy management of a solar-battery powered fixed-wing uav,” in 2018 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 2018, pp. 180–185.
    [12] J. Shiau, D. Ma, P. Yang, G. Wang and J. H. Gong, "Design of a Solar Power Management System for an Experimental UAV," in IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1350-1360, Oct. 2009, doi: 10.1109/TAES.2009.5310303.
    [13] L. R. Adrian and L. Ribickis, “Proposed piezoelectric energy harvesting in mobile robotic devices,” in 2014 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2014, pp. 63–66.
    [14] J. Armenta, C. Núñez, N. Visairo, and I. Lázaro, “An advanced energy management system for controlling the ultracapacitor discharge and improving the electric vehicle range,” J. Power Sources, vol. 284, pp. 452–458, 2015.
    [15] B. Wang, J. Xu, B. Cao, and X. Zhou, “A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles,” J. Power Sources, vol. 281, pp. 432–443, 2015.
    [16] H. Yin, W. Zhou, M. Li, C. Ma, and C. Zhao, “An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles,” IEEE Trans. Transp. Electrif., vol. 2, no. 3, pp. 300–311, 2016.
    [17] H. Marzougui, A. Kadri, J.-P. Martin, M. Amari, S. Pierfederici, and F. Bacha, “Implementation of energy management strategy of hybrid power source for electrical vehicle,” Energy Convers. Manag., vol. 195, pp. 830–843, 2019.
    [18] A. Florescu, S. Bacha, I. Munteanu, A. I. Bratcu, and A. Rumeau, “Adaptive frequency-separation-based energy management system for electric vehicles,” J. Power Sources, vol. 280, pp. 410–421, 2015.
    [19] B. Hredzak, V. G. Agelidis, and M. Jang, “A Model Predictive Control System for a Hybrid Battery-Ultracapacitor Power Source,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1469–1479, 2014.
    [20] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614–623, 2006.
    [21] C. Covaci and A. Gontean, “Piezoelectric energy harvesting solutions: a review,” Sensors, vol. 20, no. 12. 2020.
    [22] M. Ünlü and S. Çamur, “A simple photovoltaic simulator based on a one-diode equivalent circuit model,” in 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 2017, pp. 33–36.
    [23] Z. Cabrane, M. Ouassaid, and M. Maaroufi, “Management and control of the integration of supercapacitor in photovoltaic energy storage,” in 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 2017, pp. 1–6.
    [24] K. Bi, L. Sun, Q. An, and J. Duan, “Active soc balancing control strategy for modular multilevel super capacitor energy storage system,” IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4981–4992, 2019.
    [25] M. C. Argyrou, P. Christodoulides, C. C. Marouchos, and S. A. Kalogirou, “Hybrid battery-supercapacitor mathematical modeling for pv application using matlab/simulink,” in 2018 53rd International Universities Power Engineering Conference (UPEC), 2018, Glasgow, UK, pp. 1–6.
    [26] S. M. R. Islam, S. Park, and B. Balasingam, “Circuit parameters extraction algorithm for a lithium-ion battery charging system incorporated with electrochemical impedance spectroscopy,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018, pp. 3353–3358.
    [27] A. Nugroho, E. Rijanto, F. D. Wijaya, and P. Nugroho, “Battery state of charge estimation by using a combination of coulomb counting and dynamic model with adjusted gain,” in 2015 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Bandung, Indonesia, 2015, pp. 54–58.
    [28] B. Singh, B. Verma, and P. K. Padhy, “Study of P&O and inc pv mppt techniques for different environment conditions,” in 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2018, pp. 165–169.
    [29] T. Ogawa, T. Ueno, T. Miyazaki, and T. Itakura, “20 mV input, 4.2 V output boost converter with methodology of maximum output power for thermoelectric energy harvesting,” in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, USA, 2016, pp. 1907–1910.
    [30] A. Meehan, H. Gao, and Z. Lewandowski, “Energy harvest with microbial fuel cell and power management system,” in 2009 IEEE Energy Conversion Congress and Exposition, San Jose, USA, 2009, pp. 3558–3563.

    無法下載圖示 全文公開日期 2026/02/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE