簡易檢索 / 詳目顯示

研究生: 黃嘉慶
Jia-Cing Huang
論文名稱: 以不同熱蒸鍍法製備之氯化硼亞酞菁小分子有機太陽能電池之元件效率與衰退機制探討
Research of PCE and decay mechanism on SubPc base OPV device fabricated by different thermal deposition method
指導教授: 李志堅
Chih-Chien Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 小分子有機太陽能電池元件壽命氯化硼亞酞菁
外文關鍵詞: small molecule organic solar cll, lifetime, SubPc
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討以石墨加熱慢升溫法(quartz tube deposited)與鎢舟加熱快升溫法(tungsten boat deposited)蒸鍍之氯化硼亞酞菁(subphthalocyanine,SubPc)薄膜所製備之有機太陽能電池光電轉換效率不同的原因,以及這兩種太陽能電池的衰退機制。實驗中我們發現,以鎢舟加熱快升溫法蒸鍍之SubPc做為Donor的有機太陽能電池元件,具有較高的開路電壓(VOC)以及填充因子(FF),因此具有較高的光電轉換效率(~4%)。在連續照光量測元件壽命實驗中,我們發現鎢舟加熱快升溫法製作的太陽能電池效率的衰退主要來自於光電流(JSC)的衰退而石墨加熱慢升溫法製作的太陽能電池,效率衰退主要來自於開路電壓以及光電流的衰退,而且後者效率衰退的速度較前者快。本篇論文提供了一個簡單的製程方法,製做出高效率的有機太陽能電池,並探討了其效率衰退的原因。


    In this thesis, we investigate the power conversion efficiency (PCE) and lifetime difference of SubPc/C60 based organic solar cells with different SubPc sublimation methods, the tube deposition and the boat deposition. We find out the boat deposited SubPc solar cell exhibited higher open circuit voltage (VOC) and fill factor than tube deposited SubPc solar cell and leaded to higher power conversion efficiency (~4%).
    In the continue illumination lifetime experiment, we find out the PCE decay of tube deposited SubPc solar cell comes from the degradation of VOC and JSC whereas the PCE decay of boat deposited SubPc solar cell was attributed to JSC mainly. Therefore, the PCE decay of tube deposited SubPc solar cell was faster than boat deposited SubPc solar cell. This thesis gave an easy way to fabricate a high PCE solar cell and discuss the mechanism of OPV lifetime.

    誌謝 i 中文摘要 ii ABSTRACT iii 總目錄 iv 圖目錄 viii 表目錄 xii Chapter 1 緒論 1 1.1 前言 1 1.2 介紹 2 1.2.1 無機太陽能與有機太陽能 2 1.2.2 有機太陽能發展歷史 3 1.2.3 異質接面 4 1.2.4 雙異質接面 5 1.2.5 Bulk異質接面 7 1.2.6 串接有機太陽能電池 8 1.2.7 有機太陽能元件壽命 9 1.3 商業化應用之有機太陽能 13 Chapter 2 理論基礎 15 2.1 太陽光光譜 15 2.2 有機太陽能電池工作原理 16 2.3 有機太陽能電池特性與等效電路 18 2.4 亞酞菁之材料、薄膜與元件特性[76] 21 2.5 成膜理論 25 2.6 影響元件壽命之機制 26 2.6.1 本質劣化因素 27 2.6.2 非本質劣化因素 27 Chapter 3 實驗 29 3.1 儀器介紹 30 3.1.1 昇華系統 30 3.1.2 超音波震盪機 31 3.1.3 旋轉塗佈機 31 3.1.4 曝光機 31 3.1.5 氧電漿清洗機 31 3.1.6 手套箱 32 3.1.7 熱蒸鍍機 32 3.1.8 電壓電流特性 34 3.1.9 外部量子效率 34 3.1.10 愛克斯光繞射儀(XRD) 35 3.1.11 原子力顯微鏡(AFM) 36 3.1.12 紫外光/可見光光譜儀 37 3.1.13 光電子光譜儀 37 3.2 前置準備 38 3.2.1 有機材料昇華 38 3.2.2 ITO基板圖樣化製程 38 3.3 元件與薄膜製程 40 3.3.1 ITO基板清洗 41 3.3.2 氧電漿清洗 41 3.3.3 熱蒸鍍製程 41 3.3.4 封裝製程 42 3.4 量測分析 43 3.4.1 Hole only元件特性 43 3.4.2 OPV元件光電特性 43 3.4.3 薄膜特性量測 44 Chapter 4 結果與討論 45 4.1 不同蒸鍍方法對有機太陽能電池效率之影響 45 4.1.1 短路電流 46 4.1.2 開路電壓VOC 50 4.1.3 填充因子Fill Factor 55 4.2 影響有機太陽能電池元件壽命之機制 56 4.2.1 長期熱效應 56 4.2.2 短期光化學反應 57 4.3 SubPc薄膜分子排列 67 Chapter 5 結論與未來展望 71 Chapter 6 參考文獻 72

    [1] S. G. Benka, “Special Issue The Energy Challenge,” Physics Today, Vol. 55, pp. 38-39 (2002).
    [2] P. B. Weisz, “Basic Choices and Constraints on Long-Term Energy Supplies,” Physics Today, Vol. 57, pp. 47-52 (2004).
    [3] M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” Science, Vol. 298, pp. 981-987 (2002).
    [4] T. M. L. Wigley and S. C. B. Raper, “Interpretation of High Projections for Global-Mean Warming,” Science, Vol. 293, pp. 451-454 (2001).
    [5] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Progress in Photovoltaics: Research and Applications, Vol. 9, pp. 123-135 (2001).
    [6] N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science, Vol. 315, pp. 798-801 (2007).
    [7] S. R. Forrest, “Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques,” Chemical Reviews, Vol. 97, pp. 1793-1896 (1997).
    [8] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Appl. Phys. Lett., Vol. 78, pp. 841-843 (2001).
    [9] F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing--First public demonstration,” Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 422-441 (2009).
    [10] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” Journal of Materials Chemistry, Vol. 19, pp. 5442-5451 (2009).
    [11] F. C. Krebs, “All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps,” Org. Electron., Vol. 10, pp. 761-768 (2009).
    [12] M. Volmer, “Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung,” Annalen der Physik, Vol. 345, pp. 775-796 (1913).
    [13] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x,” Journal of the Chemical Society, Chemical Communications, Vol. pp. 578-580 (1977).
    [14] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., Vol. 51, pp. 913-915 (1987).
    [15] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, Vol. 395, pp. 151-154 (1998).
    [16] M. A. Baldo, M. E. Thompson, and S. R. Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” Nature, Vol. 403, pp. 750-753 (2000).
    [17] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., Vol. 49, pp. 1210-1212 (1986).
    [18] G. Horowitz, “Field-effect transistors based on short organic molecules,” Journal of Materials Chemistry, Vol. 9, pp. 2021-2026 (1999).
    [19] C. Dimitrakopoulos and D. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM Journal of Research and Development, Vol. 45, pp. 11-27 (2001).
    [20] M. Riede, T. Mueller, W. Tress, R. Schueppel, and K. Leo, “Small-molecule solar cells - status and perspectives,” Nanotechnology, Vol. 19, pp. 424001 (2008).
    [21] D. Zor and K. G. Kay, “Globally Uniform Semiclassical Expressions for Time-Independent Wave Functions,” Physical Review Letters, Vol. 76, pp. 1990 (1996).
    [22] Z. D. Popovic, A. Hor, and R. O. Loutfy, “A study of carrier generation mechanism in benzimidazole perylene/tetraphenyldiamine thin film structures,” Chemical Physics, Vol. 127, pp. 451-457 (1988).
    [23] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” Journal of Materials Research, Vol. 19, pp. 1924-1945 (2004).
    [24] D. Kearns and M. Calvin, “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems,” The Journal of Chemical Physics, Vol. 29, pp. 950-951 (1958).
    [25] G. A. Chamberlain, “Organic solar cells: A review,” Solar Cells, Vol. 8, pp. 47-83 (1983).
    [26] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal--chlorophyll-a--metal sandwich cells,” The Journal of Chemical Physics, Vol. 62, pp. 2139-2149 (1975).
    [27] D. Wohrle and D. Meissner, “Organic Solar Cells,” Adv. Mater, Vol. 3, pp. 129-138 (1991).
    [28] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., Vol. 48, pp. 183-185 (1986).
    [29] L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys., Vol. 86, pp. 487-496 (1999).
    [30] M. Vogel, S. Doka, C. Breyer, M. C. Lux-Steiner, and K. Fostiropoulos, “On the function of a bathocuproine buffer layer in organic photovoltaic cells,” Appl. Phys. Lett., Vol. 89, pp. 163501-163503 (2006).
    [31] P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett., Vol. 76, pp. 2650-2652 (2000).
    [32] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells,” Appl. Phys. Lett., Vol. 79, pp. 126-128 (2001).
    [33] M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, “Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices,” Appl. Phys. Lett., Vol. 89, pp. 162515 (2006).
    [34] Z. R. Hong, Z. H. Huang, and X. T. Zeng, “Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions,” Chemical Physics Letters, Vol. 425, pp. 62-65 (2006).
    [35] J. Huang, J. S. Yu, H. Lin, and Y. D. Jiang, “Detailed analysis of bathocuproine layer for organic solar cells based on copper phthalocyanine and C-60,” J. Appl. Phys., Vol. 105, pp. (2009).
    [36] S.-W. Liu, C.-C. Lee, C.-F. Lin, J.-C. Huang, C.-T. Chen, and J.-H. Lee, “4-Hydroxy-8-methyl-1,5-naphthyridine aluminium chelate: a morphologically stable and efficient exciton-blocking material for organic photovoltaics with prolonged lifetime,” Journal of Materials Chemistry, Vol. 20, pp. 7800-7806 (2010).
    [37] I. G. Hill, A. Rajagopal, A. Kahn, N. J. Watkins, S. Zorba, and Y. Gao, “Energy-level alignment at interfaces between metals and the organic semiconductor 4,4[sup [prime]]-N,N[sup [prime]]-dicarbazolyl-biphenyl
    Interface formation of pentacene on Al[sub 2]O[sub 3],” J. Appl. Phys., Vol. 84, pp. 3236-3241 (1998).
    [38] H. R. Wu, M. L. Wang, Q. L. Song, Y. Wu, Z. T. Xie, X. D. Gao, X. M. Ding, and X. Y. Hou, “Short-circuiting in fullerene devices studied by in situ electrical measurement in high vacuum and infrared imaging analysis,” Curr. Appl. Phys., Vol. 7, pp. 231-235 (2007).
    [39] N. Wang, J. Yu, Y. Zang, J. Huang, and Y. Jiang, “Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60,” Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 263-266 (2010).
    [40] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature, Vol. 376, pp. 498-500 (1995).
    [41] T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner, “The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment,” Sol. Energy Mater. Sol. Cells, Vol. 61, pp. 1-8 (2000).
    [42] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, “Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C[sub 60] active layer,” Appl. Phys. Lett., Vol. 84, pp. 4218-4220 (2004).
    [43] P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, Vol. 425, pp. 158-162 (2003).
    [44] K. Pankaj and et al., “A model for the current–voltage characteristics of organic bulk heterojunction solar cells,” Journal of Physics D: Applied Physics, Vol. 42, pp. 055102 (2009).
    [45] D. Wynands, B. Mannig, M. Riede, K. Leo, E. Brier, E. Reinold, and P. Bauerle, “Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene,” J. Appl. Phys., Vol. 106, pp. 054509 (2009).
    [46] J. G. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater, Vol. 17, pp. 66-+ (2005).
    [47] M. Hiramoto, H. Fujiwara, and M. Yokoyama, “Three-layered organic solar cell with a photoactive interlayer of codeposited pigments,” Appl. Phys. Lett., Vol. 58, pp. 1062-1064 (1991).
    [48] M. Hiramoto, H. Fujiwara, and M. Yokoyama, “p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,” J. Appl. Phys., Vol. 72, pp. 3781-3787 (1992).
    [49] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell,” Adv. Mater, Vol. 17, pp. 66-71 (2005).
    [50] T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy & Environmental Science, Vol. 2, pp. 347-363 (2009).
    [51] M. Hiramoto, M. Suezaki, and M. Yokoyama, “Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell,” Chemistry Letters, Vol. 19, pp. 327-330 (1990).
    [52] G. Yu, C. Zhang, and A. J. Heeger, “Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes,” Appl. Phys. Lett., Vol. 64, pp. 1540-1542 (1994).
    [53] S. Schuller, P. Schilinsky, J. Hauch, and C. J. Brabec, “Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements,” Applied Physics A: Materials Science & Processing, Vol. 79, pp. 37-40 (2004).
    [54] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latreche, G. Czeremuszkin, and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells,” Thin Solid Films, Vol. 511-512, pp. 349-353 (2006).
    [55] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, and A. Labouret, “Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration,” Journal of Materials Research, Vol. 20, pp. 3224-3233 (2005).
    [56] H. B. Yang, Q. L. Song, C. Gong, and C. M. Li, “The degradation of indium tin oxide/pentacene/fullerene/tris-8-hydroxy-quinolinato aluminum/aluminum heterojunction organic solar cells: By oxygen or moisture?,” Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 846-849 (2010).
    [57] M. Manceau, A. Rivaton, J.-L. Gardette, S. Guillerez, and N. Lemaitre, “Light-induced degradation of the P3HT-based solar cells active layer,” Sol. Energy Mater. Sol. Cells, Vol. In Press, Corrected Proof, pp. (2010).
    [58] K. Norrman, J. Alstrup, M. Jorgensen, and F. C. Krebs, “Lifetimes of organic photovoltaics: photooxidative degradation of a model compound,” Surface and Interface Analysis, Vol. 38, pp. 1302-1310 (2006).
    [59] E. Voroshazi, B. Verreet, T. Aernouts, and P. Heremans, “Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cells,” Sol. Energy Mater. Sol. Cells, Vol. In Press, Corrected Proof, pp. (2010).
    [60] R. De Bettignies, J. Leroy, M. Firon, and C. Sentein, “Accelerated lifetime measurements of P3HT:PCBM solar cells,” Synth. Met., Vol. 156, pp. 510-513 (2006).
    [61] P. Sullivan and T. S. Jones, “Pentacene/fullerene (C-60) heterojunction solar cells: Device performance and degradation mechanisms,” Org. Electron., Vol. 9, pp. 656-660 (2008).
    [62] S.-H. Liao, J.-R. Shiu, S.-W. Liu, S.-J. Yeh, Y.-H. Chen, C.-T. Chen, T. J. Chow, and C.-I. Wu, “Hydroxynaphthyridine-Derived Group III Metal Chelates: Wide Band Gap and Deep Blue Analogues of Green Alq3 (Tris(8-hydroxyquinolate)aluminum) and Their Versatile Applications for Organic Light-Emitting Diodes,” J. Am. Chem. Soc., Vol. 131, pp. 763-777 (2008).
    [63] C. Brabec, J. Hauch, P. Schilinsky, and C. Waldauf, “Production Aspects,” Mrs Bulletin, Vol. 30, pp. 51 (2005).
    [64] C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, “Production aspects of organic photovoltaics and their impact on the commercialization of devices,” Mrs Bulletin, Vol. 30, pp. 50-52 (2005).
    [65] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 91, pp. 379-384 (2007).
    [66] B. Leckner, “The spectral distribution of solar radiation at the earth's surface--elements of a model,” Solar Energy, Vol. 20, pp. 143-150 (1978).
    [67] J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges,” Accounts of Chemical Research, Vol. 42, pp. 1691-1699 (2009).
    [68] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., Vol. 93, pp. 3693-3723 (2003).
    [69] S.-B. Rim, R. F. Fink, J. C. Schoneboom, P. Erk, and P. Peumans, “Effect of molecular packing on the exciton diffusion length in organic solar cells,” Appl. Phys. Lett., Vol. 91, pp. 173504-173503 (2007).
    [70] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” Adv. Mater, Vol. 19, pp. 1551-1566 (2007).
    [71] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy,” J. Am. Chem. Soc., Vol. 130, pp. 3030-3042 (2008).
    [72] B. P. Rand, D. P. Burk, and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells,” Phys. Rev. B, Vol. 75, pp. 115327 (2007).
    [73] D. Gupta, S. Mukhopadhyay, and K. S. Narayan, “Fill factor in organic solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 94, pp. 1309-1313 (2010).
    [74] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, and M. Riede, “Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells,” Appl. Phys. Lett., Vol. 98, pp. 063301-063303 (2011).
    [75] P. Schilinsky, C. Waldauf, J. Hauch, and C. J. Brabec, “Simulation of light intensity dependent current characteristics of polymer solar cells,” J. Appl. Phys., Vol. 95, pp. 2816-2819 (2004).
    [76] 湯偉立, 「熱真空蒸鍍法製備氯化硼亞酞菁薄膜及其太陽能電池應用之研究」 碩士學位論文, 國立台灣科技大學,台北 2008.
    [77] A. Meller and A. Ossko, “Phthalocyaninartige Bor-Komplexe,” Monatshefte fur Chemie / Chemical Monthly, Vol. 103, pp. 150-155 (1972).
    [78] C. C. Mattheus, W. Michaelis, C. Kelting, W. S. Durfee, D. Wohrle, and D. Schlettwein, “Influence of the molecular shape on the film growth of a substituted phthalocyanine,” Synth. Met., Vol. 146, pp. 335-339 (2004).
    [79] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells,” J. Am. Chem. Soc., Vol. 128, pp. 8108-8109 (2006).
    [80] N. Kaiser, “Review of the Fundamentals of Thin-Film Growth,” Appl. Opt., Vol. 41, pp. 3053-3060 (2002).
    [81] M. Jorgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells, Vol. 92, pp. 686-714 (2008).
    [82] P. He, S. D. Wang, W. K. Wong, L. F. Cheng, C. S. Lee, S. T. Lee, and S. Y. Liu, “Vibrational analysis of oxygen-plasma treated indium tin oxide,” Chemical Physics Letters, Vol. 370, pp. 795-798 (2003).
    [83] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” J. Appl. Phys., Vol. 87, pp. 572-576 (2000).
    [84] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium--tin--oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” J. Appl. Phys., Vol. 87, pp. 295-298 (2000).
    [85] C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells, Vol. 83, pp. 273-292 (2004).

    QR CODE