簡易檢索 / 詳目顯示

研究生: 蔣侑融
Yu-Rong Jiang
論文名稱: 利用混成式電漿化學氣相沉積系統製備類鑽碳鈍化層及其電特性分析
Electrical characteristics of diamond-like carbon passivation layer on silicon substrate grown by hybrid plasma chemical vapor deposition system
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 郭東昊
Dong-Hau Kuo
陳一塵
I-Chen Chen
官大明
Ta-Ming Kuan
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 矽晶太陽能電池鈍化層類鑽碳載子生命期
外文關鍵詞: Si-based solar cells, passivation layer, diamond-like carbon, carrier lifetime
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前矽晶太陽能電池仍為市場主流,其中鈍化射極接觸(passivated emitter rear cell, PERC)太陽能電池,其製程簡單且能有效提升光電轉換效率,逐漸成為廠商發展高效率太陽能電池的首選。由於 PERC 太陽能電池大多在電池射極處成長氧化鋁鈍化層,本研究嘗試利用自組裝混成式化學氣相沉積系統(Hybrid Plasma CVD system),於 P 型矽基板上成長類鑽碳膜(diamond-like-carbon, DLC)作為鈍化層,類鑽碳具堅硬、可見光與紅外光範圍透明、高電阻率特性,具有發展鈍化層潛力。藉由少數載子生命週期作為分析類鑽碳之鈍化效果,並調整參數(甲烷/氫氣流量、工作壓力、射頻電漿功率),期望製備出高載子生命期的 DLC 鈍化層。
    為了探討 DLC 鈍化層的優劣,透過鋁/類鑽碳/矽基板(MIS)結構之電容-電壓量測,輔以平帶電壓、遲滯現象與電導法分析類鑽碳膜之固定電荷、陷阱電荷、界面缺陷;暫穩態光電導量測分析表面復合速率等重要評斷鈍化層優劣之指標,另外利用電流-電壓量測來探討漏電流對復合電流之關係,並回饋修正成長參數,製備出最佳化類鑽碳鈍化層。實驗結果發現在1 torr下、甲烷/氫氣流量比10/90 sccm、RF power為150 W此參數在此研究中有最低的表面復合速率及介面缺陷密度分別為0.23 cm/s和2.25×〖10〗^10 〖eV〗^(-1) 〖cm〗^(-2),因此載子生命期從矽裸片2.99 s提升至最高值9.85 s。


    In recent years, the passivated emitter rear cell (PERC) solar cell has benefits such as easy fabrication and high conversion efficiency which demonstrate a promising cell structure of Si-based solar cells. In general, the alumina oxide was deposited on the emitter region of PERC for passivation purpose. It is well known that the DLC thin films exhibits many advantages such as high hardness, transparency in visible-light and IR-light and high resistivity etc. In this study, the diamond like carbon (DLC) thin films is tried to grow on the p-type Si substrate by combined electron-cyclotron resonance (ECR) plasma and radio-frequency (RF) plasma chemical vapor deposition (CVD), namely hybrid plasma CVD (HPCVD) system. The growth parameters of DLC thin films such as precursors flow ratio of CH4 and H2, working pressure and RF power are optimized in order to find a better passivation result.
    The capacitance-voltage (C-V) measurement of samples constructed by metal Al/DLC/p-Si/metal Al are used for studied the fix-charge density, trap-center density and interface defect density of DLC passivation layer by techniques of the flat-band voltage, hysteresis behavior and conductance. The quasi steady state photoconductivity (QSSPC) is also be used for carrier lifetime measurement. In addition, the leakage current of sample structure is studied by the current-voltage (I-V) measurement. Finally, an optimized DLC passivation layer with growth conditions: working pressure of 1 torr, CH4/H2 flow ratio of 10/90 sccm, RF power of 150 W is used for achieving the lowest surface recombination rate (0.23 cm/s), interface defect density (2.25×〖10〗^10 〖eV〗^(-1) 〖cm〗^(-2)). In addition, the carrier lifetime is increased from 2.99 s for p-Si substrate to 9.85 s for DLC passivated p-Si substrate.

    摘要......................................................................................................................................Ⅰ Abstract ................................................................................................................................Ⅱ 致謝......................................................................................................................................Ⅲ 目錄......................................................................................................................................Ⅳ 表目錄..................................................................................................................................Ⅶ 圖目錄..................................................................................................................................Ⅷ 第一章 緒論......................................................................................................................1 1.1 前言......................................................................................................................1 1.2 研究動機與目的..................................................................................................4 1.3 文獻回顧..............................................................................................................5 第二章 實驗原理............................................................................................................11 2.1 類鑽碳之材料結構與性質................................................................................11 2.2 矽晶太陽能之表鈍化........................................................................................13 2.2.1 表面復合對太陽能電池轉換效率之影響..............................................13 2.2.2 等效固定電荷對場鈍化效應之影響......................................................13 2.3 金屬-氧化物-半導體(MOS)結構......................................................................14 2.3.1 金氧半(MOS)電容...................................................................................14 2.3.2 氧化層與半導體介面之缺陷..................................................................18 2.3.3 平帶電壓與等效固定電荷......................................................................20 2.3.4 遲滯現象與氧化層陷阱電荷..................................................................21 2.4 電導法................................................................................................................21 2.4.1 金氧半(MOS)Dit介面缺陷之導納與分布..............................................22 2.4.2 量測等效電路..........................................................................................27 2.5 載子生命週期....................................................................................................28 2.5.1 有效載子生命期......................................................................................30 第三章 實驗步驟與儀器介紹........................................................................................31 3.1 實驗流程............................................................................................................31 3.2 實驗製程儀器....................................................................................................33 3.2.1 電子迴旋共振與射頻混成電漿化學氣相沉積系統..............................33 3.2.2 熱蒸鍍機..................................................................................................34 3.2.3 一吋退火爐..............................................................................................35 3.3 實驗分析儀器....................................................................................................36 3.3.1 顯微拉曼光譜儀......................................................................................36 3.3.2 掃描式電子顯微鏡..................................................................................37 3.3.3 載子生命期量測系統..............................................................................38 3.3.4 電流-電壓量測儀器.................................................................................38 3.3.5 電容-電壓量測儀器.................................................................................39 第四章 P型矽基板之類鑽碳鈍化層成長與電特性研究.............................................40 4.1 製程條件與類鑽碳特性相關之研究................................................................40 4.1.1 甲烷/氫氣比例對類鑽碳之影響.............................................................40 4.1.2 製程壓力對類鑽碳之影響......................................................................42 4.1.3 射頻功率對類鑽碳之影響......................................................................44 4.2 類鑽碳/P型矽基板之載子生命期量測............................................................47 4.2.1 甲烷/氫氣比例對類鑽碳之影響.............................................................47 4.2.2 製程壓力對類鑽碳之影響......................................................................50 4.2.3 射頻功率對類鑽碳之影響......................................................................53 4.3 類鑽碳鈍化層之電性分析................................................................................57 4.3.1 電流-電壓量測.........................................................................................57 4.3.2 平帶電壓與等效固定電荷......................................................................61 4.3.3 遲滯現象與氧化層陷阱電荷..................................................................67 4.3.4 電導法......................................................................................................70 4.3.5 載子生命期與固定電荷、陷阱電荷、介面缺陷密度及拉曼光譜高斯擬合分析之影響............................................................................................75 第五章 結論與未來展望................................................................................................79 5.1 結論....................................................................................................................79 5.2 未來展望............................................................................................................80 第六章 參考文獻............................................................................................................81

    [1] EPIA「Global Market Outlook 2016 – 2020」.
    [2] ITRPV 10th edition 2019 – report release and key findings.
    [3] R. Swanson et al. EPRI Rep, vol. 31,pp. 661-664,(1984).
    [4] J. Phys. D: Appl. Phys. 51 (2018) 123001.
    [5] Y. Liu et al.: J. Mater. Sci. Technol., 2014, 30(8), 835-838.
    [6] S. Li, et al. Materials Science in Semiconductor Processing 100 (2019) 214–219.
    [7] H. Lee et al. Jpn. J. Appl. Phys. 54, 08KD18 (2015).
    [8] G. Dingemans et al. J. Vac. Sci. Technol. A, Vol. 30, No. 4, (2012).
    [9] X. Zhang et al. IEEE Journal of Photovoltaics, 3, 1 (2013).
    [10] Shih-chien Liu, et al. IEEE Journal of the Electron devices society, (2017).
    [11] D. Macdonald et al. J. Appl. Phys., vol. 89, pp. 2772-2778, (2001).
    [12] W.S. Choi et al. Materials Letters 62 (2008) 577–580.
    [13] J. Robertson, Materials Science and Engineering R 37 (2002) 129-281.
    [14] A. Grill, Diamond and Related Materials 8 (1999) 428–434.
    [15] W.Jacob, et al. Appl. Phys. Lett. 63(1993) 1771.
    [16] D.R. McKenzie, Rep. Prog. Phys. 39 (1996) 1611.
    [17] M. Weiler, et al. Appl. Phys. Lett. 64 (1994) 2797.
    [18] Ir. Dr. Mohd Khairuddin B. Arshad SMIEE, MIEM, P.ENG, Semiconductor fundamentals (2017).
    [19] 施敏, 李明逵, 半導體元件物理與製作技術, 交大出版社(2013).
    [20] Solid-Stare Electronics Vol. 21, No. 4, pp. 38S391, 1984.
    [21] E. H. Nicollianm, J. R. Brews, “MOS Physics and Technology”, John Wiley-Interscience Publication.

    [22] 林聖偉, 矽晶太陽能電池表面鈍化層之量測與分析-介面缺陷濃度與載子捕捉截面積, 國立清華大學碩士論文(2010).
    [23] Sinton instruments, “Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafer, Blocks, and Ingots”, (2009).
    [24] 蘇奕儒, N型矽晶圓表面鈍化層之電性研究, 元智大學碩士論文(2012).
    [25] A Grill, Cold plasma in materials fabrication.
    [26] D Korzec, et al. Plasma Sources Sci. Technol. 5 (1996) 216–234.
    [27] ITRPV 10th edition 2019 – report release and key findings.
    [28] L.E. Black et al. Solar Energy Materials and Solar Cells 188 (2018) 182–189.
    [29] L.E. Black et al. Solar Energy Materials and Solar Cells 185 (2018) 385–391.
    [30] RY. Liu et al.: J. Mater. Sci. Technol., 2014, 30(8), 835-838.
    [31] James Bullock et al. / Energy Procedia 77 ( 2015 ) 446 – 450.
    [32] Green et al. Prog Photovolt Res Appl. 2018;26:427–436.
    [33] N.A. Ludin et al. Renewable and Sustainable Energy Reviews 96 (2018) 11–28.
    [34] Sebastian Meier et al. 978-1-5386-8529-7/18/2018 IEEE.
    [35] C. J. Huang et al. 高效矽晶太陽電池發展近況, 工業材料雜誌381期(2018/9).
    [36] 施漢章, Lecture-note of plamas processing, 2010.
    [37] D Korzec et al. Plasma Sources Sci. Technol. 5 (1996) 216-234.
    [38] A. Tatarog˘lu, et al. Microelectronic Engineering 83 (2006) 582–588.
    [39] B. Tatarog˘lu, et al. Microelectronic Engineering 83 (2006) 2021-2026.
    [40] S. Altindal et al. Microelectronic Engineering 85 (2008) 1495-1501.
    [41] B. Ren et al. Journal of Alloys and Compounds 767 (2018) 600-605.
    [42] M. A. Green Solar Energy Materials & Solar Cells 143 (2015) 190-197.
    [43] T. Niewelt et al. Green Solar Energy Materials & Solar Cells 185 (2018) 252-259.
    [44] Q. Y. Deng et al. Surface & Coatings Technology 365 (2019) 15-23.
    [45] Y. Zhou et al. Surface & Coatings Technology 361 (2019) 83-90.
    [46] C. Jin et al. Solid-State Electronics 123 (2016) 106–110.
    [47] Giuseppe Luongo et al. Nanomaterials (2017), 7, 158.
    [48] D. K. Simon et al. ACS Appl. Mater. Interfaces, 7 (51), 28215–28222 (2015).
    [49] W. C. Wang et al. ACS Appl. Mater. Interfaces , 7, 10228−10237 (2015).
    [50] Vandana, N et al. Phys. Chem. Chem. Phys., 16, 21804 (2014).
    [51] E. Jia, C et al. Nanoscale Research Letters, 10:129 (2015).
    [52] 邱靖雯, 利用微/奈米尺度複合結構提升矽基板漫射率, 國立台灣科技大學碩士論文(2016).
    [53] 宋柏廷, 氮化鋁層厚度對 N 型矽基板鈍化效應之研究, 國立台灣科技大學碩士論文(2016).
    [54] 洪偉智, 以混成式電漿化學氣相沉積系統製備類鑽碳薄膜及其應用之研究, 國立台灣科技大學碩士論文(2019).

    無法下載圖示 全文公開日期 2024/07/02 (校內網路)
    全文公開日期 2024/07/02 (校外網路)
    全文公開日期 2024/07/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE