簡易檢索 / 詳目顯示

研究生: 李謙
LEE, CHIEN
論文名稱: 連續碳纖維增強聚合物複合材料3D列印模組改良與列印參數之研究
Research on the improvement of continuous carbon fiber reinforced polymer composites 3D printing module and printing parameters
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 郭俊良
Chun-Liang Kuo
劉浩志
Hao-Chih Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 複合材料連續碳纖維3D 列印
外文關鍵詞: Composite materials, continuous carbon fiber, 3D Printing
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來碳纖維複合材料之需求逐年遞增,
    ,3D 列印纖維複合 材料
    技術也逐漸發展,過去本實驗室已自行 開發 3D 列印 連續碳纖維複合
    材料模組,但模組在列印上遇到許多困難 列印頭 固定角度較不精準、
    燈源裝置 以傾斜照射使光源強度不足、 整平裝置 調整方式過於複雜、
    並且需要 新增自動剪切機構 改善過去人工剪線材之問題 。 各機構 在列
    印前尚未有完整的 校 正方式 和列印參數 。

    印頭模固定鎖點為 45 避免拆 裝時產生誤差、 改良 UV光源裝
    置 為直照式 、設計含有荷重元以及僅有 Z軸調整的 整平裝置 、新增自
    動剪切機構 改善過去人工剪線材之問題以及 制定列印模組以及列印
    平台之校正標準。 透過熱重量分析儀 ( Thermogravimetric analysis, TGA )量測得知連續碳纖維材料之碳纖維含量為 60.5vol%。 透過光學
    顯微鏡 ( Optical Microscope, OM )觀測列印後之疊層斷面以及尺寸,
    得到最好之列印參數:列印間距 1.4 mm、層厚 0.8 mm、錨固 時間 5秒與列印速度 150mm/min。 本研究使用熱差式掃描分析 ( Differential scanning calorimetry, DSC )自行開發的光固化基材 固化溫度為 200 ℃
    用來制定後處理方式, 並 成功列印平板、圓弧薄殼與中空圓管。


    In recent years, the demand for carbon fiber composite materials has been increasing year by year, and 3D printing fiber composite material technology has gradually developed. In the past, our laboratory has developed 3D printing continuous carbon fiber composite material modules by itself, but the modules encountered many difficulties in printing: The fixed angle of the print head is relatively inaccurate, the light source device is tilted to illuminate the light source, the light source intensity is insufficient, the adjustment method of the leveling device is too complicated, and an automatic cutting mechanism needs to be added to improve the problem of manual wire cutting in the past. Each organization does not have a complete calibration method and printing parameters before printing.
    The fixed locking point of the print head die is 45° to avoid errors during disassembly and assembly, the UV light source device is improved to be direct-illuminated, the design contains a load cell and a leveling device with only Z-axis adjustment, and an automatic cutting mechanism is added to improve the past labor The problem of cutting the wire and formulating the calibration standard of the printing module and printing platform. The carbon fiber content of the continuous carbon fiber material is 60.5vol% measured by thermogravimetric analysis (TGA). Observe the laminated section and size after printing through an optical microscope (OM) to get the best printing parameters: printing pitch 1.4 mm, layer thickness 0.8 mm, anchoring time 5 seconds, and printing speed 150 mm / min. In this study, we used differential scanning calorimetry (DSC) to develop a self-developed photo-curable substrate with a curing temperature of 200 ℃℃, which was used to formulate post-processing methods, and successfully printed flat plates, arc shells and hollow round tubes. .

    目錄 摘要 2 Abstract 3 致謝 4 目錄 5 第一章 緒論 16 1.1 研究背景 16 1.2 研究動機與目的 18 1.3 研究方法 19 1.4 論文架構 20 第二章 文獻探討 21 2.1 複合材料(Composites) 21 2.1.1 預浸布(Prepreg) 22 2.2 複合材料製造技術[6] 23 2.3 纖維複合材料積層製造技術 27 2.3.1 短纖維/熱塑性樹脂複合材料 28 2.3.2 短纖維/熱固性樹脂複合材料 29 2.3.3 連續纖維/熱塑性樹脂複合材料 31 2.3.4 連續纖維/熱固性樹脂複合材料 36 2.4 本研究室研究回顧 40 第三章 列印模組設計改良與實驗材料 42 3.1 列印機台硬體架構 42 3.2 舊版的複合材料列印模組 43 3.2.1 列印頭 44 3.2.2 整平裝置 45 3.2.3 光源裝置 46 3.3 新版的複合材料3D列印模組 47 3.3.1 列印平台校正量錶 48 3.3.2 列印頭設計 49 3.3.3 整平裝置設計 50 3.3.4 光源裝置 52 3.3.5 自動剪切機構 53 3.3.6 模組改良總結 57 3.4 實驗材料 59 3.4.1 基材-環氧基雙固型樹脂 59 3.4.2 增強材-碳纖維 61 3.4.3 製備線材 63 第四章 列印模組校正與列印測試 64 4.1 列印模組校正 64 4.1.1 列印頭校正 64 4.1.2 整平裝置校正 65 4.1.3 穿入線材以及灌入光固化基材 66 4.1.4 燈源裝置校正 67 4.2 自動剪切機構之路徑規劃 69 4.3 連續碳纖維增強熱固性線材列印測試 70 4.3.1 列印速度測試 71 4.3.2 單根線材斷面尺寸與形狀 73 4.3.3 列印間距參數列印測試 78 4.3.4 列印層厚參數列印測試 81 4.3.5 列印參數 83 4.4 列印樣品後處理 84 4.4.1 加熱固化溫度分析 84 4.4.2 加壓前置作業 86 4.4.3 加壓加熱固化 88 4.4.4 列印物件廢料移除 89 4.5 列印成果 90 4.5.1 碳纖維含量 91 4.5.2 列印物件 93 第五章 複合材料3D列印圓弧薄殼和中空圓管 96 5.1 複合材料3D列印模組與五軸同動及加減法融合3D列印設備整合 96 5.1.1 五軸機台介紹 96 5.1.2 列印平台設計 97 5.2 非平板式列印 98 5.2.1 圓弧薄殼以及中空圓管列印之模具設計 99 5.2.2 圓弧薄殼件列印 100 5.2.3 中空圓管件列印 102 5.2.4 後處理完移除模具 105 5.2.5 圓弧薄殼列印結果 106 5.2.6 中空圓管列印結果 108 第六章 結論與未來研究方向 110 6.1 結論 110 6.2 未來研究方向 111 參考文獻 112 附錄一 115

    參考文獻
    [1] Moi Composites, https://www.moi.am/
    [2] Continuous Composites,https://www.continuouscomposites.com/
    [3] Yueke Ming, Shaoqiu Zhang, Wei Hana, Ben Wang, Yugang Duan, Hong Xiao (2020). “Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites” Additive Manufacturing 33:101184.
    [4] 葉孟考,黃婉萱,宋棋舜,呂俊麟(2019),“複合材料力學近況簡介”國立清華大學
    [5] “Technology update: prepregs.” Reinforced Plastics 47(6):20-21.
    [6] Donald V. Rosato; Marlene G. Rosato; Nick R. Schott, (2012) ,“Plastics Technology Handbook, Volume 2: Manufacturing, Composites, Tooling, Auxiliaries”
    [7] Marforged, https://markforged.com/
    [8] Weihong Zhong, Fan Li, Zuoguang Zhang, Lulu Song, Zhimin Li. (2001), “Short fiber reinforced composites for fused deposition modeling.” Mater Sci Eng 301:125-130
    [9] Olga S. Carneiro, A.F. Silva, Rui Gomes. (2015), “Fused deposition modeling with polypropylene.” Mater Des 83:768-776
    [10] Arevolabs, https://arevo.com/
    [11] Brett G. Compton, Jennifer A. Lewis. (2014). “3D-printing of lightweight cellular composites.” Adv Mater 26:5930-5.
    [12] Ryosuke Matsuzaki, Masahito Ueda, Masaki Namiki, Tae-Kun Jeong, Hirosuke Asahara, Keisuke Horiguchi, Taishi Nakamura, Akira Todoroki, Yoshiyasu Hirano, (2016). “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation.” Scientific Rep 6:23058.
    [13] Nanya Li, Yingguang Li, Shutung Liu. (2016), “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing.” J. Mater. Process. Technol 238:218-225.
    [14] Xiaoyong Tian, Tengfei Liu, Qingrui Wang, Abliz Dilmurat, Dichen Li, Gerhard Ziegmann, (2017). “Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites.” Journal of Cleaner Production 142:1609-1618.
    [15] Masahito Ueda, Shun Kishimoto, Masao Yamawaki, Ryosuke Matsuzaki, Akira Todoroki, Yoshiyasu Hirano, Antoine, Le Duigou,(2020). “3D compaction printing of a continuous carbon fiber reinforced thermoplastic.”Composites Part A:Applied Science and Manufacturing Volume 137, 105985
    [16] Haoqi Zhang, Jiayun Chen, Dongmin Yang(2021). “Fiber misalignment and breakage in 3D printing of continuous carbon fiber reinforced thermoplastic composites.” Additive Manufacturing Volume 38, 101775
    [17] Xu He, Yuchen Ding, Zepeng Lei, Sam Welch, Wei Zhang, Martin Dunn, Kai Yu(2021). “3D printing of continuous fiber-reinforced thermoset composites.” Additive Manufacturing 40:101921.
    [18] EnvisioTEC, https://envisiontec.com/
    [19] 陳亮瑜(2019), “3D列印複合材料之連續碳纖維線材製備系統開發”國立臺灣科技大學碩士論文
    [20] 劉承樺(2019), “連續碳纖維複合材料3D列印之研究”國立臺灣科技大學碩士論文
    [21] 博士達科技股份有限公司, http://www.bosstar.com/zh-tw/
    [22] 釭泊科技有限公司, http://www.ganbow.com.tw/goweb
    [23] 立釧剪刀, https://www.li-jaou.com.tw/
    [24] 台灣塑膠工業股份有限公司, https://www.fpg.com.tw/tw
    [25] C.Y. Baldwin, K.B. Clark(2000) “Design rules: the Power of Modularity, volume 1,” The MIT Press.
    [26] 許明發,郭文雄編著/複合材料
    [27] 3M公司, https://www.3m.com.tw/3M/zh_TW/company-tw/
    [28] 舜格有限公司, https://www.ohprecis.com/cht/
    [29] 博益精儀股份有限公司, http://proyes.tw
    [30] 台灣三豐儀器股份有限公司,https://www.mitutoyo.com.tw

    無法下載圖示 全文公開日期 2024/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE