簡易檢索 / 詳目顯示

研究生: Thirayu Chuesutham
Thirayu Chuesutham
論文名稱: 藻酸鹽,碳點和磁鐵礦複合材料的製程以及多種應用
Synthesis of alginate combining carbon dots coated magnetite for multiple therapy
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 47
中文關鍵詞: 藻酸鹽碳點氧化鐵
外文關鍵詞: Alginate, Carbon dots, Magnetite(Fe3O4)
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有奈米碳點(Cdot)在四氧化三鐵(Fe3O4)的表面與藻酸鹽(alginate)結合的奈米凝膠(Alg-Fe3O4@C)具有無毒性、高生物相容性、優異的光穩定性和良好的水分散性,適用於多種療法,如藥物傳輸,磁共振成像(MRI)以及溫熱療法。 通過奈米碳點塗覆在Fe3O4奈米顆粒,然後通過使用1-乙基-3-(3-二甲基氨基丙基)碳二亞胺(1-Ethyl-3-(3-dimethylaminopropyl)carbodimide)和N-羥基琥珀酰亞胺(N-Hydroxysuccinimide)作為酰胺化反應的偶聯劑將Fe3O4@C 與藻酸鹽作結合。 使用傅立葉變換紅外吸收光譜分析(FTIR),動態光散射儀(DLS,SZ-100),和透射電子顯微鏡(TEM)分析來研究Alg-Fe3O4 @ C的表面特徵。而在藥物乘載與藥物釋放方面,比起藻酸鹽,Alg-Fe3O4@C 具有較佳的表現。


    Nanogels based on alginate combining carbon dots-coated magnetite (Alg-Fe3O4@C) with nontoxicity, high biocompatibility, excellent photo-stability, and good water dispersibility were synthesized for applications to multiple therapies like drug delivery, MRI contrast and hyperthermia. Fe3O4 nanoparticles were coated by carbon dots (Fe3O4@C), then combined with alginate by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents of amidation reaction. The characterizations of (Alg-Fe3O4@C) were investigated using fourier transform infrared (FTIR) absorption spectroscopic analysis, dynamic light scattering instrument (DLS, SZ-100), zeta-potential and transmission electron microscopic (TEM) analysis. Loading and release of doxorubicin on the nanogels were larger than alginate nanogel.

    Abstract ii 摘要 iii Acknowledgements iv Table of Content v List of Figures viii List of Tables ix CHAPTER 1-Introduction and Motivation 1 1. Introduction 1 1.1 Drug delivery system 1 1.2 Hyperthermia in cancer treatment 2 1.3 Sodium alginate 3 1.4 Magnetic nanoparticle 4 1.5 Carbon dot 5 1.6 Hydroxyapatite 5 1.7 Polydopamine 6 1.8 Doxorubicin 6 1.9 Motivation and objective of this work 7 CHAPTER 2-Experimental 8 2.1 Materials 8 2.2. Synthesis of material 9 2.2.1 Magnetite nanoparticle (Fe3O4) 9 2.2.2 Carbon dot 9 2.2.3 Carbon dot-coated magnetite nanoparticle (Fe3O4@C) 10 2.2.4 Alginate-carbon dot-coated magnetite nanogel (Alg-Fe3O4@C) 11 2.2.5 Hydroxyapatite-alginate-Fe3O4@C nanogel (HAp-Alg- Fe3O4@C, sample 1) 12 2.2.6 Hydroxyapatite-alginate-Fe3O4@C nanogel (HAp-Alg- Fe3O4@C, sample 2) 13 2.2.7 Hydroxyapatite-alginate-Fe3O4@C nanogel (HAp-Alg- Fe3O4@C, sample 3) 13 2.2.8 Dopamine-alginate-Fe3O4@C nanogel (DOP-Alg- Fe3O4@C, 14 2.3. Analytical method 14 2.3.1 Fourier transforms infrared (FTIR) absorption spectroscopic analysis 14 2.3.1 Particle size analysis 14 2.3.1 Transmission electron microscopic (TEM) analysis 15 2.3.1 Determination of drug loading 15 2.3.1 Determination of in-vitro drug release 15 CHAPTER 3-Results and Discussion 17 3.1 Characterization of nanogel 17 3.1.1 Characterization of (Fe3O4@C) 17 3.1.2 Characterization of (Alg-Fe3O4@C) 18 3.1.3 Synthesis of (HAp-Alg-Fe3O4@C) sample 1, 2 and 3 19 3.3.4 Synthesis of (DOP-Alg-Fe3O4@C) pH 14 19 3.2 Particle size of nanogels 20 3.2.1 Particle size and zeta potential of nanogels 20 3.2.2 Particle size of alginate, and Alg-Fe3O4@C nanogels 21 3.2.3 Particle size of alginate, Alg-Fe3O4@C, HAp-Alg- Fe3O44@C and DOP-Alg-Fe3O4@C 22 3.3 Drug loaded and release 36 3.3.1 DOX loaded on alginate nanogel 23 3.3.2 DOX loaded on Alginate and Alg-Fe3O4@C 25 3.3.3 DOX loaded on Alg-Fe3O4@C and HAp-Alg-Fe3O4@C 26 3.3.4 DOX released from alginate 27 3.3.5 DOX released from Alg-Fe3O4@C 28 3.3.6 DOX released from HAp-Alg-Fe3O4@C 29 CHAPTER 4- Conclusion 32 REFERENCES 33

    REFERENCES
    1. van der Zee, J., Heating the patient: a promising approach?, in Annals of Oncology. 2002. p. 1173-1184.
    2. Wust, P., et al., Hyperthermia in combined treatment of cancer, in The Lancet Oncology. 2002. p. 487-497.
    3. Burchardt, E. and A. Roszak, Hyperthermia in cervical cancer – current status, in Reports of Practical Oncology & Radiotherapy. 2018.
    4. Kyaw, M.A. and W. Hu, Effect of Cytoreductive Surgery Combined with Intraoperative Intra-Thoracic Hyperthermic Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer, in Journal of Cancer Research and Treatment. 2014. p. 1-5.
    5. Chicheł, A., et al., Hyperthermia – description of a method and a review of clinical applications, in Reports of Practical Oncology & Radiotherapy. 2007. p. 267-275.
    6. Chang, J., et al., Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads, in J Hazard Mater. 2015. p. 30-6.
    7. Wang, F., X. Lu, and X.Y. Li, Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery, in J Hazard Mater. 2016. p. 75-83.
    8. Boissière, M., et al., Potentialities of silica/alginate nanoparticles as Hybrid Magnetic Carriers, in International Journal of Pharmaceutics. 2007. p. 128-134.
    9. T., F., S. G., and M. G., Ordered Two-Dimensional Arrays of Ferrite Nanoparticles, in Advanced Materials. 2001. p. 1158-1161.
    10. Finotelli, P.V., et al., Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications, in Materials Science and Engineering: C. 2004. p. 625-629.
    11. Bauer, T.L., A Randomized, Controlled Trial of Financial Incentives for Smoking Cessation, in Yearbook of Oncology. 2009. p. 129-130.
    12. Song, Y., et al., Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe(3+) in Living Cells, in ACS Appl Mater Interfaces. 2017. p. 7399-7405.
    13. Zhou, L., et al., Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging, in Langmuir. 2013. p. 6396-403.
    14. Vallet-Regi, M. and E. Ruiz-Hernandez, Bioceramics: from bone regeneration to cancer nanomedicine, in Adv Mater. 2011. p. 5177-218.
    15. Matsumoto, T., et al., Hydroxyapatite particles as a controlled release carrier of protein, in Biomaterials. 2004. p. 3807-12.
    16. Abbasi Aval, N., et al., Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment, in Int J Pharm. 2016. p. 159-167.
    17. Cui, J., et al., Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules, in Biomacromolecules. 2012. p. 2225-8.
    18. Gao, Y., et al., A sweet polydopamine nanoplatform for synergistic combination of targeted chemo-photothermal therapy, in Macromol Rapid Commun. 2015. p. 916-22.
    19. Lin, L.-S., et al., Multifunctional Fe3O4@Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy, in ACS Nano. 2014, American Chemical Society. p. 3876-3883.
    20. Tan, E.C., R. Lin, and C.H. Wang, Fabrication of double-walled microspheres for the sustained release of doxorubicin, in J Colloid Interface Sci. 2005. p. 135-43.
    21. Guhagarkar, S.A., et al., Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting, in Int J Pharm. 2010. p. 113-22.
    22. Kim, H.S. and I.W. Wainer, Simultaneous analysis of liposomal doxorubicin and doxorubicin using capillary electrophoresis and laser induced fluorescence, in J Pharm Biomed Anal. 2010. p. 372-6.
    23. Liu, Z., et al., A study of doxorubicin loading onto and release from sulfopropyl dextran ion-exchange microspheres, in Journal of Controlled Release. 2001. p. 213-224.
    24. Baltes, S., et al., Doxorubicin and irinotecan drug-eluting beads for treatment of glioma: a pilot study in a rat model, in J Mater Sci Mater Med. 2010. p. 1393-402.
    25. Dreis, S., et al., Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles, in Int J Pharm. 2007. p. 207-14.
    26. Qi, J., et al., Nanoparticles with dextran/chitosan shell and BSA/chitosan core--doxorubicin loading and delivery, in Int J Pharm. 2010. p. 176-84.
    27. Hruby, M., C. Konak, and K. Ulbrich, Polymeric micellar pH-sensitive drug delivery system for doxorubicin, in J Control Release. 2005. p. 137-48.
    28. Pramanik, N. and T. Imae, Fabrication and characterization of dendrimer-functionalized mesoporous hydroxyapatite, in Langmuir. 2012. p. 14018-27.
    29. Ye, Y.Q., et al., Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin, in Int J Pharm. 2008. p. 294-301.
    30. Che, C., et al., New Angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration, in J Med Chem. 2010. p. 2814-24.
    31. Greenwald, R.B., et al., Effective drug delivery by PEGylated drug conjugates, in Advanced Drug Delivery Reviews. 2003. p. 217-250.
    32. Kurdekar, A., et al., Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection, in Microfluidics and Nanofluidics. 2016.
    33. Mohammadi, A., H. Daemi, and M. Barikani, Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles, in Int J Biol Macromol. 2014. p. 447-55.
    34. Xie, M., et al., Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application, in Applied Surface Science. 2018. p. 853-860.
    35. Padmanabhan, S.K., et al., Sol–gel synthesis and characterization of hydroxyapatite nanorods, in Particuology. 2009. p. 466-470.
    36. Tao, X., et al., Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles, in Nanomaterials (Basel). 2015.
    37. Huang, J., et al., Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking, in Mater Sci Eng C Mater Biol Appl. 2015. p. 41-51.

    無法下載圖示 全文公開日期 2023/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE