簡易檢索 / 詳目顯示

研究生: 黃庭耕
Ting-keng Huang
論文名稱: 摻合成分對羥基磷灰石塗佈於幾丁聚醣電紡纖維的影響
The Effect of Additives on the Coating of Hydroxyapatite onto Chitosan Electrospun Fibers
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 施劭儒
Shao-Ju Shih
饒文娟
Win-Chun Jao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 靜電紡絲幾丁聚醣聚環氧乙烷海藻酸羥基磷灰石骨組織支架
外文關鍵詞: electospinning, chitosan, PEO, alginate, hydroxyapatite, bone tissue scaffolds
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以靜電紡絲法製備纖維,將幾丁聚醣(chitosan, Cs)和海藻酸(alginate, AL)以濕式電紡製備Cs-AL複合纖維;又將幾丁聚醣和聚環氧乙烷(PEO)以乾式電紡製備Cs-PEO纖維。再以交替浸泡的方式在材料表面進行磷灰石塗佈,沉積出羥基磷灰石(HAp)結晶。
    在靜電紡絲製成部分,探討的參數包括濃度、流速,觀察參數對纖維外觀的影響。經磷灰石塗佈後的電紡纖維也接著進行物性分析,結晶在能量分散譜分析(EDS)、結構鑑定(FTIR)、X光繞射(XRD)測試後,結果與文獻上HAp數據相符。實驗也將材料置入於降解環境中,評估材料穩定性以瞭解材料使用時結構的破壞程度,結果顯示二種纖維的的降解度並不高,而以Cs-PEO-HAp降解程度較低。隨後進行的細胞相容性測試,觀察兩種纖維的細胞毒性、細胞增生,並觀察細胞貼附於材料表面的型態。Cs-PEO-HAp的細胞毒性與Cs-AL-HAp相差不大,對細胞均無毒性,但其增生略為優異。


    In this study, we used electrospinning technique to produce two different fiber. Alginate was made fiber with Chitosan. Another fiber was prepared with Chitosan and PEO material. Then we coat apatite on our material to produce hydroxyapatite crystal by alternate soaking process.
    The effect of electrospinning parameters, including concentration and flow rate, were investigated. Fiber after apatite coating was analyzed by EDS, FTIR, XRD and the crystal was confirmed as hydroxyapatite. Stability assessment showed that these two materials degraded less than 20% after 3 d in F12/DMEM/FBS or simulated body fluid. The results of cytocompatibility test show that these two materials were non-cytotoxicity, and that the proliferation of osteoblasts on Cs-PEO-HAp was slightly higher than that on Cs-AL-HAp.

    第一章 緒論 1.1研究背景 1.2研究目的 第二章 文獻回顧 2.1靜電紡絲 2.1.1靜電紡絲的發展 2.1.2靜電紡絲裝置的架設 2.1.3影響靜電紡絲之參數 2.1.4 靜電紡絲之應用 2.2實驗材料介紹 2.2.1 羥基磷灰石 2.2.2 幾丁聚醣 2.2.3 海藻酸 2.3 骨材 2.4 礦化作用 第三章 實驗材料與方法 3.1 實驗藥品 3.2 實驗儀器 3.3 實驗流程 3.4 實驗方法 3.4.1溶液製備 3.4.2靜電紡絲架構和參數 3.4.3靜電紡絲薄膜製備 3.4.4物性測試 3.4.5模擬體液製備方法 3.4.6溶液性質 3.4.7細胞相容性 第四章 結果與討論 4.1靜電紡絲纖維性質 4.1.1表面型態觀察 4.1.2流變儀黏度測量 4.2磷灰石塗布於電紡纖維 4.2.1表面型態觀察與分析 4.2.2 FTIR之結構鑑定 4.2.3 X光繞射 4.2.4穩定度測定 4.3生物相容性 4.3.1細胞毒性 4.3.2細胞增生 4.3.3細胞貼附微型態觀察 第五章 結論 第六章 文獻回顧  

    1. Bose GM, Recherches sur la cause et sur la veritable theorie del'electricite. Wittenberg, 1745.
    2. Lord Rayleigh, On the equilibrium of liquid conducting masses charged with electricity London. Edinburgh, and Dublin Phil. Mag. J., 1882. 44 p. 184–6.
    3. Formhals A, Process and apparatus for preparing artificial threads. US Patent, 1934
    4. Taylor G, Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society of London. Series A, 1964. 280: p. 383-397.
    5. Simons HL, US patent, 1966.
    6. Baumgarten P. K., Electrostatic spinning of acrylic microfibres. J. Colloid Interface Sci., 1971. 36: p. 71–9.
    7. Reneker DH, Chun I, Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnology, 1996. 7: p. 216-23.
    8. Huang, Z-M, Zhang, YZ, Kotaki, M, Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
    9. Frenot A, Ioannis S, Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science, 2003. 8 p. 64–75.
    10. Norris ID, Shaker MM, Ko FK, MacDiarmid AG, Electrostatic fabrication of ultrafine conducting fibers: polyaniline r polyethylene oxide blends. Synthetic Metals 2000. 114: p. 109–114.
    11. Geng X, Kwon OH, Jang J, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-32.
    12. Deitzel JM, Kleinmeyer J, Beck HD, Tan NC, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001. 42: p. 261–272.
    13. Sill TJ, von Recum HA, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
    14. Taylor G, Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, 1969 313(1515): p. 453-475.
    15. Doshi J., Reneker DH, Electrospinning process and applications of electrospun fibers. J Electrostatics 1995 Aug. 35(2 - 3): p. 151 - 60.
    16. Megelski S, Stephens JS, Chase DB, Rabolt JF, Micro- and Nanostructured Surface Morphology on Electrospun Polymer. Macromolecules, 2002. 35: p. 8456 - 8466.
    17. Heikkila P, Harlin A, Parameter study of electrospinning of polyamide-6. European Polymer Journal, 2008. 44(10): p. 3067-3079.
    18. Wang C, Zhang W, Huang ZH, Yan EY, Su YH. Effect of concentration, voltage, take-over distance and diameter of pinhead on precursory poly (phenylene vinylene) electrospinning. Pigment & Resin Technology, 2006. 35(5): p. 278-283.
    19. Pakravan M, Heuzey M-C, Ajji A, A fundamental study of chitosan/PEO electrospinning. Polymer, 2011. 52(21): p. 4813-4824.
    20. Fathi MH, Hanifi A, Mortazavi V, Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. Journal of Materials Processing Technology, 2008. 202(1-3): p. 536-542.
    21. Zhao XH, Yang LF, Zuo Y, Xiong JP, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid. Chinese Journal of Chemical Engineering, 2009. 17(4): p. 667-671.
    22. Currey J, Biomaterials: sacrificial bonds heal bone. Nature, 2001. 414: p. 699–708.
    23. Kivrak N, Tas AC, Synthesis of calcium hydroxyapatite tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J. Am. Ceram. Soc., 1998. 81: p. 2245–2252.
    24. Hung IM, Shih WJ, Hon MH, Wang MC. The properties of sintered calcium phosphate with [ca]/[p] = 1.50. Int J Mol Sci, 2012. 13(10): p. 13569-86.
    25. Aminzare M, Eskandari A, Baroonian MH, Berenov A, Razavi Hesabi Z, Taheri M, Sadrnezhaad SK, Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International, 2013. 39(3): p. 2197-2206.
    26. Goudarzi A, Solati-Hashjin M, Moztarzadeh F, Surfactant Assisted Synthesis of Hydroxyapatite Nano-rods by Aqueous Precipitation and Hydrothermal Post-Treatment 2007: p. 964-968.
    27. Liu JB, Ye XY, Wang H, Zhu MK, Wang B, Yan H, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics International 2003. 29: p. 629–633.
    28. Jayakumar R, Menon D, Manzoor K, Nair SV, amura H, Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydrate Polymers, 2010. 82(2): p. 227-232.
    29. Homayoni H, Ravandi SAH, Valizadeh M, Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 2009. 77(3): p. 656-661.
    30. Muzzarelli RAA, Chitin. Pergamon Press, Oxford, 1977: p. 50–85.
    31. Neamnark A, Rujiravanit R, Supaphol P, Electrospinning of hexanoyl chitosan. Carbohydrate Polymers, 2006. 66(3): p. 298-305.
    32. Li L, Hsieh YL., Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research, 2006. 341: p. 374-81.
    33. Kriegel C, Kit KM, McClements DJ, Weiss J, Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer, 2009. 50(1): p. 189-200.
    34. Yang DZ, Yu K, Ai YF, Zhen ZP, Nie J, Kennedy JF, The mineralization of electrospun chitosan/poly(vinyl alcohol) nanofibrous membranes. Carbohydrate Polymers, 2011. 84(3): p. 990-996.
    35. Liao SS, Cui FZ, Zhang W, Feng QL, Hierarchically biomimetic bone scaffold materials: Nano-HA/Collagen/PLA composite. J. Biomed. Mater. Res, 2004. 69B: p. 158–165.
    36. Lee DW, Lim H, Chong HN, Shim WS, Advances in chitosan material and its hybrid derivatives: a review. Open Biomater J, 2009. 1: p. 10-20.
    37. Morris ER, Rees DA, Thom D, Boyd J. , Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydrate Res, 1978. 66: p. 145–54.
    38. Hu W-W, Yu H-N, Coelectrospinning of Chitosan/Alginate Fibers by Dual-Jet System for Modulating Material Surfaces. Carbohydrate Polymers, 2013.
    39. Watthanaphanit A., Supahol P., Furuike T., Tokura S., Tamura H., Rujiravanit R., Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan–citrate complex and their characterization. Biomacromolecules, 2009. 10: p. 320-7.
    40. George M, Abraham TE,. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Rel, 2006. 114: p. 1–14.
    41. Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis MJ, Vacanti JP, Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone, 2006. 38: p. 555 – 563.
    42. Murugan R, Ramakrishna S, Development of nanocomposites for bone grafting. Comp. Sci. Tech., 2005. 65: p. 2385–2406.
    43. Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomaterialia, 2011. 7: p. 907–920.
    44. Liao S, Murugan R, Chan CK, Ramakrishna S, Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. Journal of Mechanical behavior of Biomedical Materials, 2008. I: p. 2 5 2 – 2 6 0.
    45. Liao SS, Guan K, Cui FZ, Shi SS, Sun TS, Lumbar Spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine, 2003. 28: p. 1954–1960.
    46. Murugan R., Ramakrishna S., In-situ formation of recombinant humanlike collagen-hydroxyapatite nanohybrid through bionic approach. Appl. Phys. Lett., 2006. 88: p. 93124.
    47. Abe Y, Kokubo T, Yamamuro, J. Mater. Sci., Mater. Med., 1990. 1: p. 233.
    48. Goes JC, Figueiro SD, Oliveira AM, Macedo AA, Silva CC, Ricardo NM, Sombra AS, Apatite coating on anionic and native collagen films by an alternate soaking process. Acta Biomater, 2007. 3(5): p. 773-8.
    49. Ducheyne P, Bioceramics: Material characteristics versus in vivo behavior of calcium phosphate ratio Biomed Mater Res, 1987. 21: p. 219-36.
    50. Ma Z, Chen F, Zhu YJ, Cui T, Liu XY., Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci, 2011. 359(2): p. 371-9.

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE