簡易檢索 / 詳目顯示

研究生: 林坤德
Kun-te Lin
論文名稱: 鋼纖維與矽砂含量對活性粉混凝土 熱學及力學性質之影響
The Influence of Steel Fiber and Silica Sand Contents on Thermal and Mechanical Properties of Reactive Powder Concrete
指導教授: 張大鵬
Ta-peng Chang
口試委員: 陳振川
Chen-chuan Chen
黃然
Jan Huang
黃兆龍
Chao-lung Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 179
中文關鍵詞: 矽砂熱傳導係數熱擴散係數比熱鋼纖維
外文關鍵詞: thermal diffusivity, specific heat, thermal conductivity, silica sand, steel fiber
相關次數: 點閱:342下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究活性粉混凝土以控制組作比較針對不同含水量(0%,100%),以不同鋼纖維(0%,1%,2%)、矽砂含量(VS/VC=1.6,1.8,2.0)及養護溫度(25℃、55℃、85℃及溼度95%)進行熱學、力學、SEM及MIP試驗。
研究結果顯示:(1)鋼纖維的添加對抗壓強度、超音波波速、動彈性模數、動剪力模數及柏松比有提升之作用,而在熱學性質方面則也是有效之增加熱傳導及熱擴散係數,但比熱值隨之降低。(2)不同矽砂含量在25℃及55℃溫度養護下,力學性質隨矽砂含量增加而增加,但在85℃則有相反之趨勢。(3)不同矽砂含量在25℃及55℃溫度養護下,所有熱學性質隨矽砂含量增加而增加。養護溫度為85℃時,在早期7天齡期熱傳導及熱擴散係數會隨著砂含量增加而降低,到了28天齡期時,反而會隨著砂含量增加而增加,VS/VC=1.8時比熱最低。(4)含水量0%之熱傳導係數、熱擴散係數及比熱,較飽和含水量100%低。(5)SEM看出活性粉混凝土微觀結構分佈很緻密,在鋼纖維與漿體間存在一過渡區,形成較多孔隙。(6)MIP試驗中,加入鋼纖維之活性粉混凝土,總孔隙含量較無加鋼纖維多,但孔隙尺寸有較小之情形。


By comparing with the control set, the study presents the experimental results of thermal, mechanical, SEM and MIP of Reactive Powder Concrete(RPC) with different steel fiber content (0%, 1%, 2%), silica sand content (VS/VC=1.6, 1.8, 2.0), and curing temperature (25℃, 55℃, 85℃ at relative humidity 95%),on the conditions of two different water content (0% and 100%).
Experimental results show that: (1) Compressive strength, UPV, dynamic modulus of elasticity, dynamic modulus of rigidity and Poisson’s ratio, thermal conductivity and thermal diffusivity increase with increase of steel fiber content, except for specific heat. (2) Mechanical properties increase with increase of silica sand content in the condition of curing temperature at 25℃ and 55℃, but decrease at 85℃. (3) All of the thermal properties improved with increasing of sand content at 25℃ and 55℃. In the condition of curing temperature at 85℃, thermal conductivity and thermal diffusivity decrease with increasing of silica sand content at the age of 7 days, but increase with increasing of silica sand content at the age of 28 days, especially, specific heat is the lowest when sand-to-cement ratio equal to 1.8. (4) Thermal conductivity, thermal diffusivity, and specific heat of specimen at the condition of 0% water content are lower than those at 100% water content. (5) According to the photograph of SEM, micro-structure of reactive powder concrete is very dense, but more porosity forms in the transition zone between steel fiber and paste. (6) According to the test of MIP, there are more porosity in reactive powder concrete with the addition of steel fiber, but the dimension of pore becomes lesser.

摘要 I Abstract II 目錄 III 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1研究動機 1 1-2研究目的 2 1-3研究方法 2 第二章 文獻回顧 3 2-1活性粉混凝土 3 2-1-1活性粉混凝土之發展 3 2-1-2活性粉混凝土之原理和技術 4 2-1-3活性粉混凝土之材料組成 5 2-2鋼纖維與水泥基材間之特性 7 2-2-1鋼纖維與水泥基材間之力學行為 7 2-2-2鋼纖維與水泥基材間界面微觀結構 9 2-3混凝土的熱學性質 9 2-3-1 混凝土之熱傳導係數 10 2-3-1-1混凝土材料與金屬材料熱傳導係數量測之差異 11 2-3-1-2 硬固混凝土之熱傳導性質 12 2-3-1-3熱傳導係數之量測方法 13 2-3-2 混凝土之比熱 14 2-3-3 混凝土之熱膨脹 14 2-3-4 混凝土之熱擴散 15 2-4 卜作嵐材料 16 2-4-1卜作嵐材料之性質 16 2-4-2 矽灰對熱傳導係數及比熱之影響 16 2-5 砂與含水量之添加對熱傳導係數及比熱之影響 17 2-5-1 砂的添加對熱傳導係數及比熱之影響 17 2-5-2 含水量對熱傳導係數及比熱之影響 17 2-6 常壓加溫蒸氣養護 18 2-6-1 常壓加溫蒸氣養護流程 18 2-6-2 溫度對水化速率之影響 20 2-6-3 溫度對孔隙之影響 20 2-6-4 溫度對強度之影響 21 2-6-5 超音波、強度及成熟度三者之關係 21 第三章 實驗計畫 23 3-1研究及試驗流程 23 3-2試驗材料 23 3-3試驗儀器 25 3-4試驗項目及變數 29 3-4-1試驗項目 29 3-4-2試驗變數 30 3-4-3試體編號規則 30 3-5試驗方法 32 3-5-1材料基本性質試驗 32 3-5-2活性粉混凝土新拌性質試驗 33 3-5-2-1試體製作 33 3-5-2-2流度試驗 34 3-5-3活性粉混凝土硬固性質試驗 34 3-5-3-1抗壓強度 34 3-5-3-2動彈性模數、動剛性模數及柏松比 34 3-5-3-3超音波檢測 36 3-5-3-4熱傳導係數、熱擴散係數及比熱 36 3-5-3-5單方向溫度加熱 37 3-5-3-6 SEM微觀分析 38 3-5-3-7 EDS分析 38 3-5-3-8 MIP壓汞孔隙 38 第四章 結果與分析 40 4-1活性粉混凝土之新拌性質 40 4-2活性粉混凝土之硬固性質 41 4-2-1抗壓強度 42 4-2-2超音波波速 44 4-2-3動彈性模數 45 4-2-4動剪力模數 47 4-2-5柏松比 48 4-3活性粉混凝土之熱學性質 49 4-3-1熱傳導係數 49 4-3-2熱擴散係數 51 4-3-3比熱 52 4-3-4單方向溫度加熱 53 4-3-4-1單方向溫度加熱之抗壓強度 54 4-3-4-2單方向溫度加熱之超音波波速 55 4-4活性粉混凝土之微觀性質 55 4-5活性粉混凝土之壓汞孔隙試驗 57 第五章 結論與建議 59 5-1結論 59 5-2建議 61 參考文獻 159

1. 苗伯霖,「新型高性能超高強建築材料—活性粉混凝土」,營建知訊,162 期,第52-60 頁,1996。
2. Adeline, R., M.Lachemi, and P. Blais, “Design and Behaviour of the Sherbrooke Footbridge”, International Symposium on High- Performance and Reactive Powder Concretes, Sherbrooke, Canada, pp.89-97, August 16-20, 1998.

3. Dallaire, P.-C. Aitcin, and M. Lachemi, “The Sherbrooke Reactive Powder Concrete Footbridge”, ACI 1997 International Conference on High-Performance Concrete, Kuala Lumpur, Malaysia, December 2-5, 1997.
4. Aitcin, P.-C. and P. Richard, “The Pedestrian/Bikeway Bridge of Sherbrooke”, 4th International Symposium on Utilization International Symposium on Utilization of High-Performance Concrete, pp. 1399-1406, Paris, May 29-31, 1996
5. Matte, V., C. Richet, M. Moranville, “Characterization of Reactive Powder Concrete as a Candidate for the Storage of Nuclear Wastes”, Internaional Symposium on High- Performance and Reactive Powder Concretes, Sherbrooke, Canada, pp. 75-88, August 16-20, 1998.
6. Dowd W.,and F.O’Neil,“Development of Reactive Powder Concrete Precast Products for the USA Market”,4th International Symposium on the Utilization of High Strength/High Performance Concrete, Paris, pp1391-1398, 1995

7. Marcel C.and Vincent M.,“Microstructural Analysis of Reactive Powder Concrete”,Cement and Concrete Research, Vol.25, No.7, pp.1491-1500, 1995
8. N.Roux,C.Andrade ,and M. A. Sanjuan “Experimental Study of Durability of Reactive Powder Concretes”,Journal of Material In Civil Engineering,pp1~6,February,1996
9. 宋佩瑄,「纖維混凝土實務」,現代營建雜誌社出版,台北,1991
10. 李志信,「鋼纖維混凝土材料之水中磨耗性質與機理之探討」,碩士論文,國立台灣大學,民國88年。(詹穎雯教授指導)
11. 朱書賢,「鋼纖維與活性粉混凝土間界面性質研究」,碩士論文,國立台灣大學,民國89年。(詹穎雯教授指導)
12. P. Richard and M. Cheyrezy., “Reactive Powder Concretes with High Ductility and 200-800 Mpa Compressive Strength.”, ACI Spring Convention, San Francisco, April 1994.
13. 何曜宇,「活性粉混凝土破壞行為之研究」,碩士論文,國立台灣大學,民國89年。(陳振川教授指導)
14. P. Richard and M. Cheyrezy., “Composition of Reactive Powder Concretes.”, Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511, 1995.
15. 邱英嘉、謝素蘭,「混凝土配比設計專題製作」,文京圖書有限公司,台北,1998
16. 譚業成,「活性粉混凝土力學行為之研究」,碩士論文,國立台灣大學,民國88年。(詹穎雯教授指導)

17. 廖基良,「活性粉混凝土配比本土及微觀物理性質之研究」,碩士論文,國立台灣大學,民國87年。(詹穎雯教授指導)
18. 李介充,「溫度製程對超高強高性能混凝土力學性質影響研究」,碩士論文,國立台灣大學,民國87年。(陳振川教授指導)
19. 宋佩瑄,「纖維混凝土實務」,現代營建雜誌社出版,台北,1991。
20. 陳振川,「特殊混凝土—纖維加強混凝土」,混凝土施工技術研討會論文集,台北,第135-161 頁,1987。
21. 楊錦懷、陳振川、陳清泉,「纖維加強水泥複合材料乾縮黏彈與破裂行為研究」,博士論文,國立台灣大學,1989
22. Bentur,A.,S.Mindess,and S. Diamond, “Cracking Processes in Steel Fiber Reinforced Cement Paste”, Cement and Concrete Research, Vol.15, pp331-342, 1985
23. Bentur,A.,S.Mindess,and S. Diamond, “The Microstructure of the Steel Fiber-Cement Interface”, Journal of Materials Science, Vol.20, pp3610-3620, 1985
24. 張道光,「高溫高壓對高性能混凝土性質影響之研究」,碩士論文,國立台灣工業技術學院,1995
25. 羅增文,「玻纖、輸氣劑、輕質骨材對對高性能混凝土熱傳導性質之影響」,碩士論文,國立台灣科技大學,1998
26. 吳英信,「在無對流影響下混凝土熱傳導研究」,碩士論文,中原大學,2004
27. Cusson, Danial and Wellington L. Repette, “Early-Age Cracking in Reconstructed Concrete Bridge Barrier Walls,” ACI Material Journal, pp.438~446 (2000)
28. Nakamura, Hideaki, Sumio Hamada, Toshio Tanimoto, and Ayaho Miyamoto, “Estimation of Thermal Crack Resistance for Mass Concrete Structure with Uncertain Material Properties,” ACI Structure Journal, pp.509~518 (1999)
29. Liu, Chiu; Meline, Robert; Lee, James N. “Heat removal from mass concrete footing”, Transportation Research Record, No. 1798, 02-2883, pp.39~42 (2002)
30. ACI Committee 211.1, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” Manual of Concrete Practice, Part 1, pp. 34 (1988)
31. Kim, Jin Keun, Kook Han, Kim, Joo Kyoung, Yang “Thermal analysis of hydration heat in concrete structures with pipe-cooling system,” Computers and Structures, V 79, No 2, pp.63-171 (2001)
32. Hirth H.C.,“Thermal Properties of Concrete at Extreme Temperatures ”,Doctor of philosophy in Eny、in G、D、of The uniuersity of California,Berkeley,1982
33. Fu, X.; Chung, D.D.L., “Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste”, Cement and Concrete Research Volume: 27, Issue: 12, December, 1997, pp. 1799-1804
34. Carslaw, H. S., J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press , London, pp. 261-262 (1959)
35. Brown, T. D, and M. Y. Javaid, ”The Thermal Conductivity of Fresh Concrete,” Materials and Structures, V . 3,No. 18, pp. 416-441 (1970)
36. 鄭永傑,「卜作嵐材料及細粒料對水泥漿體熱傳導係數之影響」,碩士論文,國立台灣科技大學,2002。(張大鵬教授指導)
37. CEB/FIP, “Lightweight Aggregate Concrete, ” Longman Inc, New York, N. Y. (1977)
38. 潘昌林;鄭瑞濱;盧榮林;詹穎雯,”自充填混凝土收縮與潛變試驗”,自充填混凝土產製與施工研討會論文集,台灣營建研究院,PP.59-76,台北(2000)
39. ASTM C1113-90, “Standard Test Method for Thermal Conductivity of Refractories by Hot Wire(Platinum Resistance Thermometer Technique) ”,Annual Book of ASTM Standard, Vol.15.01, U.S.A, pp296-301, 1996
40. ASTM D5334 ,“Standard Test Method for Determination of thermal Conductivity of Soil and Soft Rock by thermal Needle Probe Procedure ”, Annual Book of ASTM Standard, Vol.0408, U.S.A, pp.1394-1398, 1993
41. Mindess. S., and J. F Young, Concrete, Prentice Hall , Englewood Cliffs , N.J. , 1981
42. Shin, Ki-Yeol,; Sang-Baik,Kim ; Jong-Hwan, Kim ; Chung, Mo; Jung, Pyung-Suk, “Thermo-physical properties and transient heat transfer of concrete at elevated temperatures,” Nuclear Engineering and Design, V 212, No1-3, pp.233-241 (2002)
43. Abrams, M.S., “Compressive Strength of Concrete Institute”, SP25, Temperature and Concrete, Detroit , pp33-58
44. 黃兆龍,”混凝土性質與行為”,詹氏書局,台北 (1997)
45. Lofqvist, B., ”Temperature Effekter I Hardnande Betong, ”Tenkiskt Meddelande Fran Kung1. Vaterfallsstyrelsen Nr22, Stockholm, pp.195 (1946)
46. ACI Committee 308,”Standard Practice for Curing of Concrete, ”American Concrete Institite, Detroit, MI, U.S.A. (1992)
47. 莊昆斌,「蒸氣養護對不同爐石添加量自充填混凝土熱學性質及工程性質之研究」,碩士論文,國立台灣科技大學,2004。(張大鵬教授指導)
48. Xu, Yunsheng; Chung, D.D.L., “Cement of high specific heat and high thermal conductivity, obtained by using silane and silica fume as admixtures”, Cement and Concrete Research Volume: 30, Issue: 7, July, 2000, pp. 1175-1178
49. Demirboga, Ramazan, “Influence of mineral admixtures on thermal conductivity and compressive strength of mortar”, Energy and Buildings Volume: 35, Issue: 2, February, 2003, pp. 189-192
50. Xu, Yunsheng; Chung, D.D.L., “Effect of sand addition on the specific heat and thermal conductivity of cement”, Cement and Concrete Research Volume: 30, Issue: 1, January, 2000, pp. 59-61
51. dos Santos, Wilson Nunes, “Effect of moisture and porosity on the thermal properties of a conventional refractory concrete”, Journal of the European Ceramic Society Volume: 23, Issue: 5, April, 2003, pp. 745-755

52. 邱亮人,” 飛灰對新拌混凝土熱學性質之影響 ”,碩士論文,國立台灣科技大學,2000(指導教授:張大鵬博士)
53. Verbeck, George J. and Richard H. Helmuth, “Structures and Physical Properties of Cement Past,” proceeding of the fifth international symposium on the chemistry, Tokyo, pp. 1-32 (1968)
54. ACI Committee 308,”Standard Practice for Curing of Concrete, ”American Concrete Institite, Detroit, MI, U.S.A. (1992)
55. 黃兆龍, “高等混凝土技術” (1986)
56. Kjellsen, Knut O, Rachel J. Detwiler, and Odd E. Gjorv,” Backscattered Electron Imaging of Cement Pastes Hydrated at Different Temperature,” Cement and Concrete Research, Vol. 20, No 2, pp. 308-311 (1990)
57. 楊至弘,”優生混凝土預鑄構件產製自動化研究”,國立台灣科技大學營建工程系碩士論文,(1996)(指導教授:黃兆龍博士)
58. Swamy , R. N. & G. H. Lambert, “The Microstructure of Lytag Aggregate”, The International Journal of Cement Composites and Lightweight Concrete, Vol.3, No.4 ( 1981 )

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE