簡易檢索 / 詳目顯示

研究生: 李宏中
Hung-Chung Li
論文名稱: 低亮度照明環境下之人眼色彩感知研究
A Study of Human Color Perception under Low Illumination Conditions
指導教授: 孫沛立
Pei-Li Sun
口試委員: 羅梅君
Mei-Chun Lo
徐明景
Ming-Ching Shyu
陳鴻興
Hung-Shing Chen
李宗憲
Tsung-Xian Lee
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 126
中文關鍵詞: 介視覺白光LED頻譜優化人因照明色外貌模式色域評估照明工程光貌模式視亮度色度量測視覺殘像
外文關鍵詞: Mesopic vision, White LED, Spectral optimization, Human factor in lighting, Color appearance, Gamut estimation, Illumination technology, Light appearance model, Visual brightness, Colorimetric measurement, Afterimage
相關次數: 點閱:284下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何提高「發光效率」以及「視覺舒適度」是近年照明科技的兩大研發重點。為求優化照明品質,首先需探討人眼於複雜環境下的真實色彩感受。現今,針對明視覺範圍之色彩感知相關研究已趨於成熟,然而卻鮮少有文獻著重在低照明情況下的色外貌表現。因此,本研究基於視覺色域大小的考量,優化昏暗環境下的白光LED光譜,並透過適應區域亮度的推算,提出光貌模式以預測高對比照明情況下的色彩感知,同時探索於夜間介視覺環境下,經由強烈LED照明所產生的視覺殘像特性。

    本研究採用一個中介視覺色外貌模式,模擬各種可能的白光LED頻譜所構成的最大介視覺亮度值與3D色域範圍。推導適用於低照明情況下之優化白光LED頻譜。根據模擬結果,該優化頻譜之波峰波段落於短波長處,能夠擴大色域範圍,卻無法提供較理想之發光效率。隨著照明環境之亮度等級遞減,具有較高色溫且高S/P-ratio之優化白光LED頻譜明顯提升視覺績效。

    光貌模式的建構方面,則利用心理視覺實驗以探討於非均勻照明光環境下之色外貌表現。本研究結果顯示,背景圖案之形狀並非主要之影響因素,然而背景大小、環境亮度等級與背景亮度等級皆對色外貌之評價具較大影響。本研究提出優化CIECAM02色外貌參數之方法,使CIECAM02能夠適用於照明領域。本研究亦提出基於統一眩光指數(Unified Glare Rating)之視亮度預測模型,可適用於照明評估。

    「視覺殘像特性評估」的實驗結果顯示,曝光時間、曝光強度等級與背景亮度皆為影響殘像特性之顯著因子。殘像消失時間基本上跟曝光時間與曝光強度的乘積成正比。在較高亮度背景下,殘像消失時間與相對色差明顯減少,且能夠有效提高能見度。

    本研究之結果不僅能夠增進照明相關領域研究學者對介視覺下色彩表現的了解,並提供適用於照明設計的視覺模型。


    How to improve light efficiency and visual comfort are two important aspects of lighting research. To optimize lighting quality, human color perception under various conditions should be studied first. Color perception under photopic vision range have been well studied. However, only few literatures focus on color appearance under low illumination conditions. In dark conditions, white LED spectra can be optimized by taking visual color gamut into account. To optimize lighting of a viewing field, a Light Appearance Model (LAM) is required to predict perceptual colors under high contrast lighting conditions. As strong lighting in the dark conditions would cause annoying afterimages, the visual characteristics of afterimage also should be studied in depth.

    To optimal white LED spectra for low illumination conditions, a mesopic vision model was applied to maximize mesopic luminance and 3D color gamut volume simultaneously. Simulation results suggest that the peak spectrum response in short wavelength could extend the range of color gamut but produce relatively lower mesopic luminance. Our psychophysical experiments also verified that lower luminance level, higher CCT and higher S/P-ratio white LED spectra obviously improved the speed and accuracy of reflective pattern recognition in low illumination conditions.

    In terms of light appearance modeling, the color appearance under non-uniform surround conditions with variation of stimulus luminance, surround luminance, background luminance, background orientation, and background size were tested psychophysically. The results show that the background size and surround luminance influence the appearance intensively; whereas the orientation of background pattern has little effect. A method to determine optimal parameters for the CIECAM02 color appearance model in lighting applications is proposed. An UGR-based model also is optimized for brightness estimation. The luminance of adapting field can be estimated by Gaussian-like functions.

    In terms of visual characteristics of afterimage, psychophysical results show that the intensity of illumination, exposure time and luminance of background are the primary factors influencing characteristic of afterimage.

    The results not only help lighting researchers to further understand the mechanism of mesopic color vision but also provide useful knowledge and models for future lighting design.

    中文摘要 i Abstract iii Acknowledgements v Contents vi List of Figures x List of Tables xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Aims 2 1.3 Contribution to Lighting Applications 3 1.4 Thesis Outline 4 1.5 Publications 6 Chapter 2 Literature Survey 8 2.1 Mesopic Vision 8 2.1.1 CIE System for Mesopic Photometry 8 2.1.2 Optimization of Light Sources with S/P-ratio 12 2.1.3 Mesopic Color Appearance Model 15 2.2 Color Appearance Model and Unrelated Color 19 2.3 Visual Brightness 21 2.4 Visual Afterimage 23 2.5 Psychophysics 24 2.5.1 Landolt Ring Test 24 2.5.2 Magnitude-estimation Method 25 2.5.3 Intra- and Inter-observer Variability 26 2.6 Summary 27 Chapter 3 Optimization of White LED Spectrum under Mesopic Condition 28 3.1 Approach of White LED Spectrum Optimization 28 3.1.1 Characteristics of White LED Spectra 30 3.1.2 Optimal White LED Spectra for Psychophysical Verification 33 3.2 Experimental Facilities 37 3.3 Brightness and Colorfulness Estimation 38 3.3.1 Experimental Setup 38 3.3.2 Experimental Procedures 39 3.3.3 Observer Variability 40 3.3.4 Experimental Results 41 3.3.5 Conclusions 42 3.4 Pattern Recognition Experiment 42 3.4.1 Experimental Setup 42 3.4.2 Experimental Procedures 44 3.4.3 Experimental Results 44 3.4.4 Conclusions 45 3.5 Optimal Spectra of Trichromatic and Tetrachromatic White LED 46 3.6 Summary 50 Chapter 4 Predicting Color Appearance under Non-uniform Lighting Environments 51 4.1 Apparatus 51 4.2 Brightness of Gray Stimuli 53 4.2.1 Experimental Setup 53 4.2.2 Experimental Procedures 54 4.2.3 Observer Variability 56 4.2.4 Visual Brightness 57 4.3 Brightness and Colorfulness of Color Stimuli 58 4.3.1 Test Patterns 59 4.3.2 Results 59 4.4 Modeling 61 4.4.1 Optimal CIECAM02 Brightness Q 61 4.4.2 Optimal CIECAM02 Colorfulness M 65 4.4.3 Using the UGR-based Model 67 4.5 Effect of Stimulus Size 70 4.6 Summary 71 Chapter 5 Visual Characteristic of Afterimage under Dark Surround Condition 72 5.1 Experimental Setup 72 5.2 Experimental Procedures 75 5.3 Experimental Facilities 77 5.4 Experimental Result 79 5.4.1 Observer Variability 79 5.4.2 Duration Time of Afterimage 80 5.4.3 Color Difference 83 5.4.4 Visibility 86 5.5 Summary 90 Chapter 6 Conclusion 91 6.1 Overview of Findings 91 6.1.1 Optimization of White LED Spectrum under Mesopic Condition 91 6.1.2 Background Luminance and Subtense Affects Color Appearance 92 6.1.3 Visual Characteristic of Afterimage under Dark Surround Condition 93 6.2 Summary 94 6.3 Future Work 95 References 97 Appendix A: Topcon SR-UL1R 105 Appendix B – Telelumen Light Replicator 106 Appendix C – Test White LED Spectra 107 Appendix D – Simulated Images 118 Appendix E –Spectra simulated by Telelumen 120 Appendix F –Test Patterns for Gray Stimuli 121 Appendix G –Test Patterns for Color Stimuli 124

    [1] Bandopadhyay, S., Kole, A., & Das, P. (2016). Review and studies on the effect of spectral composition of LED based lighting system over its scotopic-photopic ratio. In Intelligent Control Power and Instrumentation (ICICPI), International Conference on (pp. 221-225). IEEE.
    [2] Fairchild, M. D. (2013). Color appearance models. John Wiley & Sons. p 289–310.
    [3] CIE 159-2004. (2004). A Color Appearance Model for Color Management Systems: CIECAM02. Vienna, Austria: CIE Central Bureau.
    [4] Fu, C., Li, C., Luo, M. R., Hunt, R. W., & Pointer, M. R. (2007). Quantifying color appearance for unrelated color under photopic and mesopic vision. In Color and Imaging Conference (Vol. 2007, No. 1, pp. 319-324). Society for Imaging Science and Technology.
    [5] Fernandez-Maloigne, C. (Ed.). (2012). Advanced color image processing and analysis. Springer Science & Business Media. p 19–58.
    [6] Eloholma, M., Viikari, M., Halonen, L., Walkey, H., Goodman, T., Alferdinck, J. W. A. M., ... & Várady, G. (2005). Mesopic models—from brightness matching to visual performance in night-time driving: a review. Lighting Research and Technology, 37(2), 155-173.
    [7] Rea, M. S., Bullough, J. D., Freyssinier-Nova, J. P., & Bierman, A. (2004). A proposed unified system of photometry. Lighting Research & Technology, 36(2), 85-109.
    [8] Eloholma, M., & Halonen, L. (2006). New model for mesopic photometry and its application to road lighting. Leukos, 2(4), 263-293.
    [9] Halonen, L., & Puolakka, M. (2010). CIE and mesopic photometry. CIE NEWS, 1-2.
    [10] Halonen L. and Marjukka P. (2012). Development of Mesopic Photometry—The New CIE Recommended System.Light and Engineering, 2: 56.
    [11] Eloholma M., et al. (2006). Visual performance in night‐time driving conditions, Ophthalmic and physiological optics, 26(3): 254-263.
    [12] Walkey, H. C., Harlow, J. A., & Barbur, J. L. (2006). Characterising mesopic spectral sensitivity from reaction times. Vision research, 46(25), 4232-4243.
    [13] Viikari, M., Ekrias, A., Eloholma, M., & Halonen, L. (2008). Modeling spectral sensitivity at low light levels based on mesopic visual performance. Clinical ophthalmology (Auckland, NZ), 2(1), 173.
    [14] Jin, P., Wang, Y. F., Zhou, Q. F., Rooymans, J., & Yu, C. Y. (2009). Luminous efficacy of white LED in the mesopic vision state. Optoelectronics letters, 5(4), 265-267.
    [15] Li, X., Jin, S., Wang, Y., Cen, S., Liang, P., Wang, L., & Lia, X. (2010, December). The mesopic effect of different correlated color temperature LED light sources on road lighting. In Asia Communications and Photonics Conference and Exhibition (p. 799106). Optical Society of America.
    [16] Uchida, T., & Ohno, Y. (2016). Simplified field measurement methods for the CIE mesopic photometry system. Lighting Research & Technology, 1477153516643571.
    [17] Uchida, T., Ayama, M., Akashi, Y., Hara, N., Kitano, T., Kodaira, Y., & Sakai, K. (2016). Adaptation luminance simulation for CIE mesopic photometry system implementation. Lighting Research & Technology, 48(1), 14-25.
    [18] Zan, L., Lin, D., Zhong, P., & He, G. (2016). Optimal spectra of white LED integrated with quantum dots for mesopic vision. Optics Express, 24(7), 7643-7653.
    [19] CIE191, C. I. E. (2010). Recommended System for Mesopic Photometry Based on Visual Performance. Vienna: CIE.
    [20] Wu, T., Lu, Y., Guo, Z., Zheng, L., Zhu, H., Xiao, Y., ... & Chen, Z. (2017). Improvements of mesopic luminance for light-emitting-diode-based outdoor light sources via tuning scotopic/photopic ratios. Optics Express, 25(5), 4887-4897.
    [21] Lei, Z., Xia, G., Ting, L., Xiaoling, G., Ming, L. Q., & Guangdi, S. (2007). Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs. Microelectronics Journal, 38(1), 1-6.
    [22] Jiandong, Z., & Shuo, M. (2016). Dynamic Visual Performance of LED with Different Color Temperature. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(6), 437-446.
    [23] Shin, J., Matsuki, N., Yaguchi, H., & Shioiri, S. (2004). A color appearance model applicable in mesopic vision. Optical review, 11(4), 272-278.
    [24] Kaiser, P. K., & Boynton, R. M. (1996). Human color vision.
    [25] Heckamam, R. L., Fairchild, M. R., Wyble, D. R. (2005). The effect of DLP projector white channel on perceptual gamut, IS&T/SID 13th Color Imaging Conference, 205-210.
    [26] Fu, C., Luo, M. R. (2005). Methods for measuring viewing parameters in CIECAM02, IS&T/SID 13th Color Imaging Conference.
    [27] Yaguchi, H., Monma, C., Tokunaga, K., & Miyake, Y. (1990). Color appearance in mesopic vision. Color Vision Deficiencies.
    [28] Shin, J. C., Yaguchi, H., Shioiri, S., (2004). Change of color appearance in photopic, mesopic and scotopic vision. Optical Review, 11:265-271.
    [29] Shin, J. C., Matsuki, N., Yaguchi, H., Shioiri, S., (2004). A color appearance model applicable in mesopic vision. Optical Review, 11:272–278.
    [30] Eloholma, M., Halonen, L., (2005). Performance based model for mesopic photometry, Report no. 35, Lighting Laboratory, Helsinki University of Technology.
    [31] Bodrogi, P., (2014). Color appearance of mesopic related colors at 0.3, 1, 3 and 10 cd/m2: visual magnitude estimation and modeling, Proceedings of CIE 2014-Lighting Quality and Energy Efficiency, Malaysia.
    [32] Kwak, Y., MacDonald, L. W., & Luo, M. R. (2003, June). Mesopic color appearance. In Electronic Imaging 2003 (pp. 161-169). International Society for Optics and Photonics.
    [33] Fu, C., Li, C., Luo, M. R., Hunt, R. W. G., Pointer, M. R., (2011). An investigation of color appearance for unrelated colors under photopic and mesopic vision. Color Research & Application, 37:238–254.
    [34] Koo, B., Kwak, Y., (2015). Color appearance and color connotation models for unrelated colors, Color Research & Application, 40: 40-49.
    [35] Withouck, M., Smet, K. A., Ryckaert, W. R., Deconinck, G., & Hanselaer, P. (2014). Predicting the brightness of unrelated self-luminous stimuli. Optics express, 22(13), 16298-16309.
    [36] Withouck, M., Smet, K. A., Ryckaert, W. R., & Hanselaer, P. (2015). Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u. Optics express, 23(9), 12045-12064.
    [37] Withouck, M., Smet, K. A., & Hanselaer, P. (2015). Brightness prediction of different sized unrelated self-luminous stimuli. Optics express, 23(10), 13455-13466.
    [38] Wei, S. T., Luo, M. R., Xiao, K., & Pointer, M. (2017). A comprehensive model of color appearance for related and unrelated colors of varying size viewed under mesopic to photopic conditions. Color Research & Application, 42(3), 293-304.
    [39] Li, H. C., Sun, P. L., Green, P. (2002). Evaluating color appearance and visual comfort of a living environment using a panoramic camera, Proceedings of AIC 2012 Interim Meeting, Taipei.
    [40] Martínez-Verdú, F., Pujol, J., Capilla, P. (2003). Characterization of a digital camera as an absolute tristimulus colorimeter, J. Imaging Sci. & Tech., 47:279-295.
    [41] Wandell, B. A., (1995). Foundations of Vision, Sinauer, 7.
    [42] Thompson, W.,Fleming, R., Creem-Regehr, S., Stefanucci, J. K., 2011. Visual Perception from a Computer Graphics Perspective, CRC Press, 34.
    [43] Barten, P. G. J. (1999). Contrast Sensitivity of the Human Eye and Its Effects on Image Quality, SPIE Press.
    [44] Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America, A7 (10): 2032–2040.
    [45] CIE, (1995). Discomfort Glare in Interior Lighting, CIE 117-1995, CIE Central Bureau, Vienna.
    [46] Zhang, X. M. and Wandell, B. A. (1996). A spatial extension of CIELAB for digital color image reproduction, Proc. SID Symposiums, 27, 731-734.
    [47] Kuang, J., Johnson, G. M., Fairchild, M. D., 2007. iCAM06: A refined image appearance model for HDR image rendering, Journal of Visual Communication and Image Representation, 18: 106-414.
    [48] Yamaguchi, H., Fairchild, M. D. (2004). A study of simultaneous lightness perception for stimuli with multiple illumination levels, 12th Color Imaging Conference, 22–28.
    [49] Nakamura, Y. (2008). Generating Perceived color image with wavelet transform, Proceedings of Pan-Pacific Imaging Conference'08, 278-281.
    [50] Reinhard, E., Khan, E. A., Akyüz, A. O., Johnson, G. M. (2008). Color Imaging: Fundamentals and Applications, A K Peters.
    [51] Nayatani, Y. (1997). Simple estimation methods for the Helmholtz-Kohlrausch effect, Color Research & Application, 22, 385-401.
    [52] Helmholtz, H. (1925). Treatise on Physiological Optics: Translated from the 3rd German Ed. J. P. C. Southall (Ed.). Optical Society of America.
    [53] Atkinson, J. (1972). The effect of size, retinal locus, and orientation on the visibility of a single afterimage. Attention, Perception, & Psychophysics, 12(2), 213-217.
    [54] Brémond, R., Bodard, V., Dumont, E., & Nouailles-Mayeur, A. (2013). Target visibility level and detection distance on a driving simulator. Lighting Research & Technology, 45(1), 76-89.
    [55] Foxell, C. A. P., & Stevens, W. R. (1955). Measurements of visual acuity. The British journal of ophthalmology, 39(9), 513.
    [56] Weston, H. C. (1935). The Relation between Illumination and Industrial Efficiency. 1.-The Effect of Size of Work. The Relation between Illumination and Industrial Efficiency. 1.-The Effect of Size of Work.
    [57] Weston, H. C. (1945). The Relation between Illumination and Visual Efficiency-The Effect of Brightness Contrast. The Relation between Illumination and Visual Efficiency-The Effect of Brightness Contrast., (87).
    [58] Blackwell, H. R., & Scott, D. E. (1973). IERI. Analysis of Visual Performance Data Obtained in a Landolt Ring Task without Response Limitation. Journal of the Illuminating Engineering Society, 2(4), 445-460.
    [59] Luo, M. R., Clarke, A. A., Rhodes, P. A., Schappo, A., Scrivener, S. A., & Tait, C. J. (1991). Quantifying color appearance. Part I. LUTCHI color appearance data. Color Research & Application, 16(3), 166-180.
    [60] Luo, M. R., & Hunt, R. W. G. (1998). Testing color appearance models using corresponding‐color and magnitude‐estimation data sets. Color Research & Application, 23(3), 147-153.
    [61] Kuo, W. G. (2007). The feasibility of establishing new color image scales using the magnitude estimation method. Color Research & Application, 32(6), 463-468.
    [62] Roeckelein, J. E. (2004). Imagery in psychology: A reference guide. Greenwood Publishing Group.
    [63] Sueeprasan, S. (2002). Evaluation of color appearance models and daylight illuminant simulators to provide predictable cross-media color representation (Doctoral dissertation, University of Derby).
    [64] Lo, M. C., Luo, M. R., & Rhodes, P. A. (1996). Evaluating color models' performance between monitor and print images. Color Research & Application, 21(4), 277-291.
    [65] Fairchild, M. D. (2013). Color Appearance Models, 3rd edition, Wiley, 123.
    [66] Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America, A7 (10): 2032–2040.
    [67] Ito, H. (2007). Perceptual transformation of a circle and its afterimage. Perception ECVP abstract, 36, 0-0.

    QR CODE